3 research outputs found

    COVID-19 vaccination, risk-compensatory behaviours, and contacts in the UK

    Get PDF
    The physiological effects of vaccination against SARS-CoV-2 (COVID-19) are well documented, yet the behavioural effects not well known. Risk compensation suggests that gains in personal safety, as a result of vaccination, are offset by increases in risky behaviour, such as socialising, commuting and working outside the home. This is potentially important because transmission of SARS-CoV-2 is driven by contacts, which could be amplified by vaccine-related risk compensation. Here, we show that behaviours were overall unrelated to personal vaccination, but—adjusting for variation in mitigation policies—were responsive to the level of vaccination in the wider population: individuals in the UK were risk compensating when rates of vaccination were rising. This effect was observed across four nations of the UK, each of which varied policies autonomously

    Disruption prediction with artificial intelligence techniques in tokamak plasmas

    Get PDF
    In nuclear fusion reactors, plasmas are heated to very high temperatures of more than 100 million kelvin and, in so-called tokamaks, they are confined by magnetic fields in the shape of a torus. Light nuclei, such as deuterium and tritium, undergo a fusion reaction that releases energy, making fusion a promising option for a sustainable and clean energy source. Tokamak plasmas, however, are prone to disruptions as a result of a sudden collapse of the system terminating the fusion reactions. As disruptions lead to an abrupt loss of confinement, they can cause irreversible damage to present-day fusion devices and are expected to have a more devastating effect in future devices. Disruptions expected in the next-generation tokamak, ITER, for example, could cause electromagnetic forces larger than the weight of an Airbus A380. Furthermore, the thermal loads in such an event could exceed the melting threshold of the most resistant state-of-the-art materials by more than an order of magnitude. To prevent disruptions or at least mitigate their detrimental effects, empirical models obtained with artificial intelligence methods, of which an overview is given here, are commonly employed to predict their occurrence—and ideally give enough time to introduce counteracting measures
    corecore