44 research outputs found

    Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid

    Get PDF
    Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H2O2 as oxidizing agent in a batch reactor. CoCl2 and Nb2O5 proved to be the most effective catalysts in degrading lignin to aromatic compounds. A central composite design was used to optimize the catalyst loading, H2O2 concentration, and temperature for product formation. Results show that lignin was depolymerized, and the major degradation products found in the extracted oil were guaiacol, syringol, vanillin, acetovanillone, and homovanillic acid. Lignin streams were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography to determine effects of the experimental parameters on lignin depolymerization. The weight-average molecular weight (Mw) of liquid stream lignin after oxidation, for CoCl2 and Nb2O5 catalysts were 1,202 and 1,520 g mol−1, respectively, lower than that of Kraft lignin. Polydispersity index of the liquid stream lignin increased as compared with Kraft lignin, indicating wide span of the molecular weight distribution as a result of lignin depolymerization. Results from this study provide insights into the role of oxidant and transition metal catalysts and the oxidative degradation reaction sequence of lignin toward product formation in presence of aqueous ionic liquid

    Aesthetic gene and prospect of garden city from the perspective of Chinese dream

    Get PDF
    This study aims to delve into the impact of the Chinese Dream ideology on the development and aesthetic characteristics of park cities. Building upon their dialectical and unified relationship, it seeks to predict the evolutionary trajectory of urban modernization and methods to enhance residents' quality of life. Focusing on domestic cases of park city construction, the research employs innovative approaches such as on-site investigations, semi-structured interviews, and literature reviews. A distinctive contribution of this study is the introduction of the concept of "aesthetic genes," which is used to describe and interpret aesthetic elements and cultural features within park cities from five different perspectives. Furthermore, the research offers profound analyses from four distinct viewpoints regarding the future prospects of park city development in the new era. By organically integrating the Chinese Dream ideology with the concept of park cities, this study provides valuable theoretical insights and practical guidance in the fields of sustainable park city construction and urban aesthetics research

    Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid

    No full text
    Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H2O2 as oxidizing agent in a batch reactor. CoCl2 and Nb2O5 proved to be the most effective catalysts in degrading lignin to aromatic compounds. A central composite design was used to optimize the catalyst loading, H2O2 concentration, and temperature for product formation. Results show that lignin was depolymerized, and the major degradation products found in the extracted oil were guaiacol, syringol, vanillin, acetovanillone, and homovanillic acid. Lignin streams were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography to determine effects of the experimental parameters on lignin depolymerization. The weight-average molecular weight (Mw) of liquid stream lignin after oxidation, for CoCl2 and Nb2O5 catalysts were 1,202 and 1,520 g mol−1, respectively, lower than that of Kraft lignin. Polydispersity index of the liquid stream lignin increased as compared with Kraft lignin, indicating wide span of the molecular weight distribution as a result of lignin depolymerization. Results from this study provide insights into the role of oxidant and transition metal catalysts and the oxidative degradation reaction sequence of lignin toward product formation in presence of aqueous ionic liquid

    Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid

    Get PDF
    Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H2O2 as oxidizing agent in a batch reactor. CoCl2 and Nb2O5 proved to be the most effective catalysts in degrading lignin to aromatic compounds. A central composite design was used to optimize the catalyst loading, H2O2 concentration, and temperature for product formation. Results show that lignin was depolymerized, and the major degradation products found in the extracted oil were guaiacol, syringol, vanillin, acetovanillone, and homovanillic acid. Lignin streams were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography to determine effects of the experimental parameters on lignin depolymerization. The weight-average molecular weight (Mw) of liquid stream lignin after oxidation, for CoCl2 and Nb2O5 catalysts were 1,202 and 1,520 g mol−1, respectively, lower than that of Kraft lignin. Polydispersity index of the liquid stream lignin increased as compared with Kraft lignin, indicating wide span of the molecular weight distribution as a result of lignin depolymerization. Results from this study provide insights into the role of oxidant and transition metal catalysts and the oxidative degradation reaction sequence of lignin toward product formation in presence of aqueous ionic liquid

    Study on Vehicle–Road Interaction for Autonomous Driving

    No full text
    Autonomous vehicles (AVs) are becoming increasingly popular, and this can potentially affect road performance. Road performance also influences driving comfort and safety for AVs. In this study, the influence of changes in traffic volume and wheel track distribution caused by AVs on the rutting distress of asphalt pavement was investigated through finite element simulations. A vehicle-mounted three-dimensional laser profiler was used to obtain pavement roughness and texture information. The vehicle vibration acceleration was obtained through vehicle dynamics simulations, and the skid resistance indexes of 20 rutting specimens were collected. The results showed that an increase in traffic volume caused by the increasing AV traffic accelerated the occurrence of rutting distress; however, the uniform distribution of vehicles at both ends of the transverse direction could prolong the maintenance life of flexible and semi-rigid pavements by 0.041 and 0.530 years, respectively. According to Carsim and Trucksim vehicle simulations and multiple linear regression fitting, the relationship models of three factors, namely speed, road roughness, and comfort, showed high fitting accuracies; however, there were some differences among the models. Among the texture indexes, the arithmetic mean’s height (Ra) had the greatest influence on the tire–road friction coefficient; Ra greatly influenced the safe driving of AVs. The findings of this study were used to present a speed control strategy for AVs based on the roughness and texture index for ensuring comfort and safety during automatic driving

    H-Beta Zeolite as Catalyst for the Conversion of Carbohydrates into 5-Hydroxymethylfurfural: The Role of Calcination Temperature

    No full text
    H-Beta zeolite is a solid acid catalyst commonly utilized in the catalytic conversion of biomass resources. In this study, H-Beta zeolite was calcined at different temperatures (350, 550, 750, and 1000 °C) to explore the effects of high temperature-induced dealumination on its physicochemical properties and its catalytic ability to convert glucose into 5-hydroxymethylfurfural (HMF). It was shown that as the calcination temperature increased, the Si-O-Al bond of H-Beta zeolite was broken and its dealumination effect was enhanced. Dealumination led to the collapse of the framework of H-Beta zeolite and a reduction in the number of acid sites, which in turn reduced its catalytic performance and the efficiency of HMF formation from glucose. Furthermore, H-Beta zeolite exhibited an extraordinary catalytic ability for the production of HMF from carbohydrates. Using glucose and cellulose as substrates, superior HMF yields of 91% and 46%, respectively, were achieved under optimal reaction conditions. Further, calcination removes carbon deposits in the recovered H-Beta zeolite, but it affects the cycling stability of the catalyst. Meanwhile, the by-products formed during the synthesis of HMF from glucose catalyzed by H-Beta zeolite catalyst were also clearly detected

    Study on Vehicle–Road Interaction for Autonomous Driving

    No full text
    Autonomous vehicles (AVs) are becoming increasingly popular, and this can potentially affect road performance. Road performance also influences driving comfort and safety for AVs. In this study, the influence of changes in traffic volume and wheel track distribution caused by AVs on the rutting distress of asphalt pavement was investigated through finite element simulations. A vehicle-mounted three-dimensional laser profiler was used to obtain pavement roughness and texture information. The vehicle vibration acceleration was obtained through vehicle dynamics simulations, and the skid resistance indexes of 20 rutting specimens were collected. The results showed that an increase in traffic volume caused by the increasing AV traffic accelerated the occurrence of rutting distress; however, the uniform distribution of vehicles at both ends of the transverse direction could prolong the maintenance life of flexible and semi-rigid pavements by 0.041 and 0.530 years, respectively. According to Carsim and Trucksim vehicle simulations and multiple linear regression fitting, the relationship models of three factors, namely speed, road roughness, and comfort, showed high fitting accuracies; however, there were some differences among the models. Among the texture indexes, the arithmetic mean’s height (Ra) had the greatest influence on the tire–road friction coefficient; Ra greatly influenced the safe driving of AVs. The findings of this study were used to present a speed control strategy for AVs based on the roughness and texture index for ensuring comfort and safety during automatic driving
    corecore