8 research outputs found

    Clinical and electrophysiologic characteristics of left septal atrial tachycardia

    Get PDF
    AbstractObjectivesIt was the purpose of this study to define the electrophysiologic (EP) identity of left septal atrial tachycardia (AT).BackgroundThe clinical and EP characteristics of this particular type of arrhythmia have not been fully described.MethodsA total of 120 patients with AT underwent invasive EP evaluation. Five patients (two men and three women; mean age 49 ± 15 years) with left septal AT were identified. Mapping of the right and left atrium was performed using conventional electrode catheters (five patients) and a three-dimensional electroanatomic mapping system (three patients) followed by radiofrequency (RF) ablation at the earliest site of local endocardial activation.ResultsFive tachycardias with a mean cycle length of 320 ± 94 ms were mapped, and the earliest endocardial electrogram occurred 22 ± 10 ms before the onset of the surface P-wave. Three left septal ATs were found to be originating from the left inferoposterior atrial septum and two from the left midseptum. During tachycardia, positive (three patients), biphasic negative-positive deflection (one patient), or isoelectric (one patient) P waves were recorded in lead V1. The inferior leads demonstrated a positive or biphasic P-wave morphology in four of five patients (80%). Four patients were given both adenosine and verapamil during AT. In three of four patients, verapamil successfully terminated AT after adenosine had failed. Adenosine successfully terminated AT in one of four patients. Successful RF ablation was performed in all patients (mean 2.2 ± 1.7 RF applications) without affecting atrioventricular conduction properties. No recurrence of AT was observed after a mean follow-up of 14 ± 8 months.ConclusionsLeft septal AT ablation is safe and effective. There was no consistent P-wave morphology associated with this particular type of AT. This arrhythmia appears to be resistant to adenosine and moderately responsive to calcium antagonists

    Electrocardiographic Identification of Abnormal Ventricular Depolarization and Repolarization in Patients With Idiopathic Ventricular Fibrillation 11This study was supported by Grant 93.080 from The Netherlands Heart Foundation.22All editorial decisions for this article, including selection of referees, were made by a Guest Editor. This policy applies to all articles with authors from the University of California San Francisco.

    Get PDF
    AbstractObjectives. We sought to gain more insight into the arrhythmogenic etiology of idiopathic ventricular fibrillation (VF) by assessing ventricular depolarization and repolarization properties by means of various electrocardiographic (ECG) techniques.Background. Idiopathic VF occurs in the absence of demonstrable structural heart disease. Abnormalities in ventricular depolarization or repolarization have been related to increased vulnerability to VF in various cardiac disorders and are possibly also present in patients with idiopathic VF.Methods. In 17 patients with a first episode of idiopathic VF, 62-lead body surface QRST integral maps, QT dispersion on the 12-lead ECG and XYZ-lead signal-averaged ECGs were computed.Results. All subjects of a healthy control group had a normal dipolar QRST integral map. In patients with idiopathic VF, either a normal dipolar map (29%), a dipolar map with an abnormally large negative area on the right side of the thorax (24%) or a nondipolar map (47%) were recorded. Only four patients (24%) had increased QT dispersion on the 12-lead ECG and late potentials could be recorded in 6 (38%) of 16 patients. During a median follow-up duration of 56 months (range 9 to 136), a recurrent arrhythmic event occurred in 7 patients (41%), all of whom had an abnormal QRST integral map. Five of these patients had late potentials, and three showed increased QT dispersion on the 12-lead ECG.Conclusions. In patients with idiopathic VF, ventricular areas of slow conduction, regionally delayed repolarization or dispersion in repolarization can be identified. Therefore, various electrophysiologic conditions, alone or in combination, may be responsible for the occurrence of idiopathic VF. Body surface QRST integral mapping may be a promising method to identify those patients who do not show a recurrent episode of VF
    corecore