67 research outputs found

    Integrating Viral and Nonviral Vectors for Cystic Fibrosis Gene Therapy in the Airways

    Get PDF
    An important goal for cystic fibrosis (CF) gene therapy is to achieve long-term functional correction. While many vector options have been evaluated, integrating vectors have the greatest potential to maintain stable expression over time without a requirement for repeated administration. In this chapter, we discuss the importance of correcting the appropriate cell types, options for integrating vectors, animal models for CF gene therapy, and clinically relevant endpoint measurements. Lentiviral vectors are a promising option for CF gene therapy, as they integrate into the host genome and persistently express a transgene of interest. Airway cell tropism can be conferred by pseudotyping. Nonviral vectors such as DNA transposons can also integrate into the genome. Recent advances in hybrid viral/transposon vector technology improve the ability to deliver transposons to the airways in vivo. Integrating vector technology and new animal models have allowed considerable progress toward the goal of using gene therapy to correct life-long genetic diseases such as CF

    Gene therapy potential for genetic disorders of surfactant dysfunction

    Get PDF
    Pulmonary surfactant is critically important to prevent atelectasis by lowering the surface tension of the alveolar lining liquid. While respiratory distress syndrome (RDS) is common in premature infants, severe RDS in term and late preterm infants suggests an underlying genetic etiology. Pathogenic variants in the genes encoding key components of pulmonary surfactant including surfactant protein B (SP-B

    Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy

    Get PDF
    Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies

    Current Account Imbalances and Structural Adjustment in the Euro Area: How to Rebalance Competitiveness

    Full text link
    Low international competitiveness of a set of euro area countries, which have become evident by large current account deficits and rising risk premiums on government bonds, is one of the most challenging economic policy issues for Europe. We analyse the role of private restructuring and public structural reforms for the urgently needed readjustment of intra-euro area imbalances. A panel regression reveals a significant impact of private restructuring and public structural reforms on intra-euro area competitiveness. This implies that private restructuring and public reforms are rather than public transfers the best way to preserve long-term economic stability in Europe

    The Law and Economics of Liability Insurance: A Theoretical and Empirical Review

    Full text link

    Wood machining with a focus on French research in the last 50 years

    Full text link

    Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward

    Full text link
    Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a cAMP-regulated anion channel. Although CF is a multi-organ system disease, most people with CF die of progressive lung disease that begins early in childhood and is characterized by chronic bacterial infection and inflammation. Nearly 90% of people with CF have at least one copy of the ΔF508 mutation, but there are hundreds of CFTR mutations that result in a range of disease severities. A CFTR gene replacement approach would be efficacious regardless of the disease-causing mutation. After the discovery of the CFTR gene in 1989, the in vitro proof-of-concept for gene therapy for CF was quickly established in 1990. In 1993, the first of many gene therapy clinical trials attempted to rescue the CF defect in airway epithelia. Despite the initial enthusiasm, there is still no FDA-approved gene therapy for CF. Here we discuss the history of CF gene therapy, from the discovery of the CFTR gene to current state-of-the-art gene delivery vector designs. While implementation of CF gene therapy has proven more challenging than initially envisioned; thanks to continued innovation, it may yet become a reality

    Measles Virus Ribonucleoprotein Complexes Rapidly Spread across Well-Differentiated Primary Human Airway Epithelial Cells along F-Actin Rings

    Full text link
    The ability of viral particles to directly spread cell to cell within the airways without particle release is considered to be highly advantageous to many respiratory viruses. Our previous studies in well-differentiated, primary human airway epithelial cells suggest that measles virus (MeV) spreads cell to cell by eliciting the formation of intercellular membrane pores. Based on a newly generated ribonucleoprotein complex (RNP) “tracker” virus, we document by live-cell microscopy that MeV RNPs move along F-actin rings before entering a new cell. Thus, rather than diffusing through the cytoplasm of a newly infected columnar cell, RNPs take advantage of the cytoskeletal infrastructure to rapidly spread laterally across the human airway epithelium. This results in rapid horizontal spread through the epithelium that does not require particle release.Measles virus (MeV) is a highly contagious human pathogen that continues to be a worldwide health burden. One of the challenges for the study of MeV spread is the identification of model systems that accurately reflect how MeV behaves in humans. For our studies, we use unpassaged, well-differentiated primary cultures of airway epithelial cells from human donor lungs to examine MeV infection and spread. Here, we show that the main components of the MeV ribonucleoprotein complex (RNP), the nucleocapsid and phosphoprotein, colocalize with the apical and circumapical F-actin networks. To better understand how MeV infections spread across the airway epithelium, we generated a recombinant virus incorporating chimeric fluorescent proteins in its RNP complex. By live cell imaging, we observed rapid movement of RNPs along the circumapical F-actin rings of newly infected cells. This strikingly rapid mechanism of horizontal trafficking across epithelia is consistent with the opening of pores between columnar cells by the viral membrane fusion apparatus. Our work provides mechanistic insights into how MeV rapidly spreads through airway epithelial cells, contributing to its extremely contagious nature
    corecore