8 research outputs found

    New Achievements in High-Pressure Processing to Preserve Human Milk Bioactivity

    Get PDF
    High-pressure processing (HPP) is a non-thermal technology that is being increasingly applied in food industries worldwide. It was proposed that this method could be used as an alternative to holder pasteurization (HoP; 62.5°C, 30 min) in milk banks but its impact on the immunologic, enzymatic and hormonal components of human milk has not yet been evaluated in detail. The aim of our study was to compare the effects of HPP in variants: (1) 600 MPa, 10 min (2) 100 MPa, 10 min, interval 10 min, 600 MPa, 10 min (3) 200 MPa, 10 min, interval 10 min, 400 MPa, 10 min (4) 200 MPa, 10 min, interval 10 min, 600 MPa, 10 min in temperature range 19–21°C and HoP on the leptin, adiponectin, insulin, hepatocyte growth factor (HGF), lactoferrin and IgG contents in human milk. HoP was done at the Regional Human Milk Bank in Warsaw at the Holy Family Hospital on S90 Eco pasteurizer (Sterifeed, Medicare Colgate Ltd). Apparatus U4000/65 (Unipress Equipment, Poland) was used for pascalization. Milk samples were obtained from women during 2–6 weeks of lactation. Post-treatment culture showed no endogenous bacterial contamination in any tested option. Concentrations of selected components were determined using ELISA tests. The level of all analyzed components were significantly decreased by HoP: leptin 77.86%, adiponectin 32.79%, insulin 32.40%, HGF 88.72%, lactoferrin 60.31@.%, IgG 49.04%. All HPP variants caused an increase in leptin concentration, respectively (1) 81.79% (2) 90.01% (3) 86.12% (4) 47.96%. Retention of insulin after HPP was (1) 88.20% (2) 81.98% (3) 94.76% (4) 90.31% HGF (1) 36.15% (2) 38.81% 97.15% (3) 97.15% (4) 43.02%, lactoferrin (1) 55.78% (2) 57.63% (3) 78.77% (4) 64.75%. Moreover, HPP variant as 200 + 400 MPa preserved IgG (82.24%) better than HoP and resulted not statistically significant change of adiponectin level (38.55%) compare to raw milk. Our results showed that HPP leads to preservation of adipokines, growth factor, and lactoferrin, IgG much better or comparable with HoP

    The 5' regulatory sequence of the PMP22 in the patients with Charcot-Marie-Tooth disease

    No full text
    Little is known about the molecular background of clinical variability of Charcot-Marie-Tooth type 1A (CMT1A) disease and hereditary neuropathy with liability to pressure palsies (HNPP). The CMT1A and HNPP disorders result from duplication and deletion of the PMP22 gene respectively. In a series of studies performed on affected animal transgenic models of CMT1A disease, expression of the PMP22 gene (gene dosage) was shown to correlete with severity of CMT course (gene dosage effect). In this study we hypothesized that single nucleotide polymorphisms (SNPs) located within the 5' regulatory sequence of PMP22 gene may be responsible for the CMT1A/HNPP clinical variability. We have sequenced the PMP22 5' upstream regulatory sequence in a group of 45 CMT1A/HNPP patients harboring the PMP22 duplication (37) /deletion (8). We have identified five SNPs in the regulatory sequence of the PMP22 gene. Three of them i.e. -819C>T, -4785G>T, -4800C>T were detected both in the patients and in the control group. Thus, their pathogenic role in the regulation of the expression of the PMP22 gene seems not to be significant. Two SNPs i.e. -4210T>C and -4759T>A were found only in the CMT patients. Their role in the regulation of the PMP22 gene expression can not be excluded. Additionally we have detected the Thr118Met variant in exon 4 of the PMP22 gene, which was previously reported by other authors, in one patient. We conclude that the 5' regulatory sequence of the PMP22 gene is conserved at the nucleotiode level, however rarely occurring SNPs variant in the PMP22 regulatory sequence may be associated with the gene dosage effect

    A newly identified Thr99fsX110 mutation in the PMP22 gene associated with an atypical phenotype of the hereditary neuropathy with liability to pressure palsies

    No full text
    Hereditary neuropathy with liability to pressure palsies (HNPP) is manifested by a spectrum of phenotypes, from the classical HNPP course associated with intermittent nerve palsies to a neuropathy resembling Charcot-Marie-Tooth type 1 (CMT1) disease. The majority of HNPP cases are associated with submicroscopical deletions in the 17p11.2-p12 region containing the PMP22 gene, while PMP22 point mutations are rare, representing about 15% of HNPP cases. In this study, we present a patient manifesting with atypical HNPP phenotype associated with a new Thr99fsX110 mutation in the PMP22 gene. We conclude that all patients who fulfill the electrophysiological criteria of HNPP, even if they lack the typical HNPP phenotype, should be tested for point mutations in the PMP22 gene

    Innovative Techniques of Processing Human Milk to Preserve Key Components

    No full text
    Human milk not only contains all nutritional elements that an infant requires, but is also the source of components whose regulatory role was confirmed by demonstrating health-related deficiencies in formula-fed children. A human milk diet is especially important for premature babies in the neonatal intensive care unit (NICU). In cases where breastfeeding is not possible and the mother’s own milk is insufficient in volume, the most preferred food is pasteurized donor milk. The number of human milk banks has increased recently but their technical infrastructure is continuously developing. Heat treatment at a low temperature and long time, also known as holder pasteurization (62.5 °C, 30 min), is the most widespread method of human milk processing, whose effects on the quality of donor milk is well documented. Holder pasteurization destroys vegetative forms of bacteria and most viruses including human immunodeficiency virus (HIV) herpes and cytomegalovirus (CMV). The macronutrients remain relatively intact but various beneficial components are destroyed completely or compromised. Enzymes and immune cells are the most heat sensitive elements. The bactericidal capacity of heat-pasteurized milk is lower than that of untreated milk. The aim of the study was for a comprehensive comparison of currently tested methods of improving the preservation stage. Innovative techniques of milk processing should minimize the risk of milk-borne infections and preserve the bioactivity of this complex biological fluid better than the holder method. In the present paper, the most promising thermal pasteurization condition (72 °C−75 °C,) and a few non-thermal processes were discussed (high pressure processing, microwave irradiation). This narrative review presents an overview of methods of human milk preservation that have been explored to improve the safety and quality of donor milk
    corecore