3 research outputs found

    Automated Quantum Oracle Synthesis with a Minimal Number of Qubits

    Full text link
    Several prominent quantum computing algorithms--including Grover's search algorithm and Shor's algorithm for finding the prime factorization of an integer--employ subcircuits termed 'oracles' that embed a specific instance of a mathematical function into a corresponding bijective function that is then realized as a quantum circuit representation. Designing oracles, and particularly, designing them to be optimized for a particular use case, can be a non-trivial task. For example, the challenge of implementing quantum circuits in the current era of NISQ-based quantum computers generally dictates that they should be designed with a minimal number of qubits, as larger qubit counts increase the likelihood that computations will fail due to one or more of the qubits decohering. However, some quantum circuits require that function domain values be preserved, which can preclude using the minimal number of qubits in the oracle circuit. Thus, quantum oracles must be designed with a particular application in mind. In this work, we present two methods for automatic quantum oracle synthesis. One of these methods uses a minimal number of qubits, while the other preserves the function domain values while also minimizing the overall required number of qubits. For each method, we describe known quantum circuit use cases, and illustrate implementation using an automated quantum compilation and optimization tool to synthesize oracles for a set of benchmark functions; we can then compare the methods with metrics including required qubit count and quantum circuit complexity.Comment: 18 pages, 10 figures, SPIE Defense + Commercial Sensing: Quantum Information Science, Sensing, and Computation X

    A Programmable True Random Number Generator Using Commercial Quantum Computers

    Full text link
    Random number generators (RNG) are essential elements in many cryptographic systems. True random number generators (TRNG) rely upon sources of randomness from natural processes such as those arising from quantum mechanics phenomena. We demonstrate that a quantum computer can serve as a high-quality, weakly random source for a generalized user-defined probability mass function (PMF). Specifically, QC measurement implements the process of variate sampling according to a user-specified PMF resulting in a word comprised of electronic bits that can then be processed by an extractor function to address inaccuracies due to non-ideal quantum gate operations and other system biases. We introduce an automated and flexible method for implementing a TRNG as a programmed quantum circuit that executes on commercially-available, gate-model quantum computers. The user specifies the desired word size as the number of qubits and a definition of the desired PMF. Based upon the user specification of the PMF, our compilation tool automatically synthesizes the desired TRNG as a structural OpenQASM file containing native gate operations that are optimized to reduce the circuit's quantum depth. The resulting TRNG provides multiple bits of randomness for each execution/measurement cycle; thus, the number of random bits produced in each execution is limited only by the size of the QC. We provide experimental results to illustrate the viability of this approach.Comment: 15 pages, 7 figures, SPIE Defense + Commercial Sensing: Quantum Information Science, Sensing, and Computation X

    Automated Synthesis of Quantum Subcircuits

    Full text link
    The quantum computer has become contemporary reality, with the first two-qubit machine of mere decades ago transforming into cloud-accessible devices with tens, hundreds, or--in a few cases--even thousands of qubits. While such hardware is noisy and still relatively small, the increasing number of operable qubits raises another challenge: how to develop the now-sizeable quantum circuits executable on these machines. Preparing circuits manually for specifications of any meaningful size is at best tedious and at worst impossible, creating a need for automation. This article describes an automated quantum-software toolkit for synthesis, compilation, and optimization, which transforms classically-specified, irreversible functions to both technology-independent and technology-dependent quantum circuits. We also describe and analyze the toolkit's application to three situations--quantum read-only memories, quantum random number generators, and quantum oracles--and illustrate the toolkit's start-to-finish features from the input of classical functions to the output of quantum circuits ready-to-run on commercial hardware. Furthermore, we illustrate how the toolkit enables research beyond circuit synthesis, including comparison of synthesis and optimization methods and deeper understanding of even well-studied quantum algorithms. As quantum hardware continues to develop, such quantum circuit toolkits will play a critical role in realizing its potential.Comment: 49 pages, 25 figures, 20 table
    corecore