3,803 research outputs found

    A statistical model for the intrinsically broad superconducting to normal transition in quasi-two-dimensional crystalline organic metals

    Full text link
    Although quasi-two-dimensional organic superconductors such as κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 seem to be very clean systems, with apparent quasiparticle mean-free paths of several thousand \AA, the superconducting transition is intrinsically broad (e.g ∼1\sim 1 K wide for Tc≈10T_c \approx 10 K). We propose that this is due to the extreme anisotropy of these materials, which greatly exacerbates the statistical effects of spatial variations in the potential experienced by the quasiparticles. Using a statistical model, we are able to account for the experimental observations. A parameter xˉ\bar{x}, which characterises the spatial potential variations, may be derived from Shubnikov-de Haas oscillation experiments. Using this value, we are able to predict a transition width which is in good agreement with that observed in MHz penetration-depth measurements on the same sample.Comment: 8 pages, 2 figures, submitted to J. Phys. Condens. Matte

    Quantum Oscillations in the Underdoped Cuprate YBa2Cu4O8

    Full text link
    We report the observation of quantum oscillations in the underdoped cuprate superconductor YBa2Cu4O8 using a tunnel-diode oscillator technique in pulsed magnetic fields up to 85T. There is a clear signal, periodic in inverse field, with frequency 660+/-15T and possible evidence for the presence of two components of slightly different frequency. The quasiparticle mass is m*=3.0+/-0.3m_e. In conjunction with the results of Doiron-Leyraud et al. for YBa2Cu3O6.5, the present measurements suggest that Fermi surface pockets are a general feature of underdoped copper oxide planes and provide information about the doping dependence of the Fermi surface.Comment: Contains revisions addressing referees' comments including a different Fig 1b. 4 pages, 4 figure

    Experimental observation of Frohlich superconductivity in high magnetic fields

    Full text link
    Resistivity and irreversible magnetisation data taken within the high-magnetic-field CDWx phase of the quasi-two-dimensional organic metal alpha-(BEDT-TTF)2KHg(SCN)4 are shown to be consistent with a field-induced inhomogeneous superconducting phase. In-plane skin-depth measurements show that the resistive transition on entering the CDWx phase is both isotropic and representative of the bulk.Comment: ten pages, four figure

    Very weak electron-phonon coupling and strong strain coupling in manganites

    Get PDF
    The coupling of the manganite stripe phase to the lattice and to strain has been investigated via transmission electron microscopy studies of polycrystalline and thin film manganites. In polycrystalline \PCMOfiftwo a lockin to q/a∗=0.5q/a^*=0.5 in a sample with x>0.5x>0.5 has been observed for the first time. Such a lockin has been predicted as a key part of the Landau CDW theory of the stripe phase. Thus it is possible to constrain the size of the electron-phonon coupling in the CDW Landau theory to between 0.04% and 0.05% of the electron-electron coupling term. In the thin film samples, films of the same thickness grown on two different substrates exhibited different wavevectors. The different strains present in the films on the two substrates can be related to the wavevector observed via Landau theory. It is demonstrated that the the elastic term which favours an incommensurate modulation has a similar size to the coupling between the strain and the wavevector, meaning that the coupling of strain to the superlattice is unexpectedly strong.Comment: 6 pages, 7 figure

    A photonic bandgap resonator to facilitate GHz frequency conductivity experiments in pulsed magnetic fields

    Full text link
    We describe instrumentation designed to perform millimeter-wave conductivity measurements in pulsed high magnetic fields at low temperatures. The main component of this system is an entirely non-metallic microwave resonator. The resonator utilizes periodic dielectric arrays (photonic bandgap structures) to confine the radiation, such that the resonant modes have a high Q-factor, and the system possesses sufficient sensitivity to measure small samples within the duration of a magnet pulse. As well as measuring the sample conductivity to probe orbital physics in metallic systems, this technique can detect the sample permittivity and permeability allowing measurement of spin physics in insulating systems. We demonstrate the system performance in pulsed magnetic fields with both electron paramagnetic resonance experiments and conductivity measurements of correlated electron systems.Comment: Submitted to the Review of Scientific instrument

    On the relation between Unruh and Sokolov--Ternov effects

    Full text link
    We show that the Sokolov--Ternov effect -- the depolarization of particles in storage rings coming from synchrotron radiation due to spin flip transitions -- is physically equivalent to the Unruh effect for circular acceleration if one uses a spin 1/2 particle as the Unruh--DeWitt detector. It is shown that for the electron, with gyromagnetic number g≈2g \approx 2, the exponential contribution to the polarization, which usually characterizes the Unruh effect, is "hidden" in the standard Sokolov-Ternov effect making it hard to observe. Thus, our conclusions are different in detail from previous work.Comment: 23 pages, no figure

    Catastrophic Fermi surface reconstruction in the shape-memory alloy AuZn

    Full text link
    AuZn undergoes a shape-memory transition at 67 K. The de Haas van Alphen effect persists to 100 K enabling the observation of a change in the quantum oscillation spectrum indicative of a catastrophic Fermi surface reconstruction at the transition. Coexistence of both Fermi surfaces at low temperatures is suggestive of an intrinsic phase separation in the bulk of the material. In addition, a Dingle analysis reveals a sharp change in the scattering mechanism at a threshold cyclotron radius, which we suggest to be related to the underlying microstructure that drives the shape-memory effect.Comment: 4 pages, 4 figure

    Thermal activation between Landau levels in the organic superconductor β′′\beta''-(BEDT-TTF)2_{2}SF5_{5}CH2_{2}CF2_{2}SO3_{3}

    Get PDF
    We show that Shubnikov-de Haas oscillations in the interlayer resistivity of the organic superconductor β′′\beta''-(BEDT-TTF)2_{2}SF5_{5} CH2_{2}CF2_{2}SO3_{3} become very pronounced in magnetic fields ∼\sim~60~T. The conductivity minima exhibit thermally-activated behaviour that can be explained simply by the presence of a Landau gap, with the quasi-one-dimensional Fermi surface sheets contributing negligibly to the conductivity. This observation, together with complete suppression of chemical potential oscillations, is consistent with an incommensurate nesting instability of the quasi-one-dimensional sheets.Comment: 6 pages, 4 figure

    Fermion Production in the Background of Minkowski Space Classical Solutions in Spontaneously Broken Gauge Theory

    Get PDF
    We investigate fermion production in the background of Minkowski space solutions to the equations of motion of SU(2)SU(2) gauge theory spontaneously broken via the Higgs mechanism. First, we attempt to evaluate the topological charge QQ of the solutions. We find that for solutions QQ is not well-defined as an integral over all space-time. Solutions can profitably be characterized by the (integer-valued) change in Higgs winding number ΔNH\Delta N_H. We show that solutions which dissipate at early and late times and which have nonzero ΔNH\Delta N_H must have at least the sphaleron energy. We show that if we couple a quantized massive chiral fermion to a classical background given by a solution, the number of fermions produced is ΔNH\Delta N_H, and is not related to QQ.Comment: Version to be published. Argument showing that the topological charge of solutions is undefined has been strengthened and clarified. Conclusions unchange

    Anomalous behaviour of the in-plane electrical conductivity of the layered superconductor κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2

    Full text link
    The quasiparticle scattering rates in high-quality crystals of the quasi-two-dimensional superconductor κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 ~are studied using the Shubnikov-de Haas effect and MHz penetration-depth experiments. There is strong evidence that the broadening of the Landau-levels is primarily caused by spatial inhomogeneities, indicating a quasiparticle lifetime for the Landau states ≫3\gg 3 ps. In contrast to the predictions of Fermi-liquid theory, the scattering time derived from the intralayer conductivity is found to be much shorter (0.14−0.560.14-0.56 ps)
    • …
    corecore