91 research outputs found

    Safe Policy Synthesis in Multi-Agent POMDPs via Discrete-Time Barrier Functions

    Get PDF
    A multi-agent partially observable Markov decision process (MPOMDP) is a modeling paradigm used for high-level planning of heterogeneous autonomous agents subject to uncertainty and partial observation. Despite their modeling efficiency, MPOMDPs have not received significant attention in safety-critical settings. In this paper, we use barrier functions to design policies for MPOMDPs that ensure safety. Notably, our method does not rely on discretization of the belief space, or finite memory. To this end, we formulate sufficient and necessary conditions for the safety of a given set based on discrete-time barrier functions (DTBFs) and we demonstrate that our formulation also allows for Boolean compositions of DTBFs for representing more complicated safe sets. We show that the proposed method can be implemented online by a sequence of one-step greedy algorithms as a standalone safe controller or as a safety-filter given a nominal planning policy. We illustrate the efficiency of the proposed methodology based on DTBFs using a high-fidelity simulation of heterogeneous robots.Comment: 8 pages and 4 figure

    Barrier Functions for Multiagent-POMDPs with DTL Specifications

    Get PDF
    Multi-agent partially observable Markov decision processes (MPOMDPs) provide a framework to represent heterogeneous autonomous agents subject to uncertainty and partial observation. In this paper, given a nominal policy provided by a human operator or a conventional planning method, we propose a technique based on barrier functions to design a minimally interfering safety-shield ensuring satisfaction of high-level specifications in terms of linear distribution temporal logic (LDTL). To this end, we use sufficient and necessary conditions for the invariance of a given set based on discrete-time barrier functions (DTBFs) and formulate sufficient conditions for finite time DTBF to study finite time convergence to a set. We then show that different LDTL mission/safety specifications can be cast as a set of invariance or finite time reachability problems. We demonstrate that the proposed method for safety-shield synthesis can be implemented online by a sequence of one-step greedy algorithms. We demonstrate the efficacy of the proposed method using experiments involving a team of robots

    Control Barrier Functions for Sampled-Data Systems with Input Delays

    Get PDF
    This paper considers the general problem of transitioning theoretically safe controllers to hardware. Concretely, we explore the application of control barrier functions (CBFs) to sampled-data systems: systems that evolve continuously but whose control actions are computed in discrete time-steps. While this model formulation is less commonly used than its continuous counterpart, it more accurately models the reality of most control systems in practice, making the safety guarantees more impactful. In this context, we prove robust set invariance with respect to zero-order hold controllers as well as state uncertainty, without the need to explicitly compute any control invariant sets. It is then shown that this formulation can be exploited to address input delays in this system, with the result being CBF constraints that are affine in the input. The results are demonstrated in a high-fidelity simulation of an unstable Segway robotic system in real-time

    Unified Multi-Rate Control: from Low Level Actuation to High Level Planning

    Full text link
    In this paper we present a hierarchical multi-rate control architecture for nonlinear autonomous systems operating in partially observable environments. Control objectives are expressed using syntactically co-safe Linear Temporal Logic (LTL) specifications and the nonlinear system is subject to state and input constraints. At the highest level of abstraction, we model the system-environment interaction using a discrete Mixed Observable Markov Decision Problem (MOMDP), where the environment states are partially observed. The high level control policy is used to update the constraint sets and cost function of a Model Predictive Controller (MPC) which plans a reference trajectory. Afterwards, the MPC planned trajectory is fed to a low-level high-frequency tracking controller, which leverages Control Barrier Functions (CBFs) to guarantee bounded tracking errors. Our strategy is based on model abstractions of increasing complexity and layers running at different frequencies. We show that the proposed hierarchical multi-rate control architecture maximizes the probability of satisfying the high-level specifications while guaranteeing state and input constraint satisfaction. Finally, we tested the proposed strategy in simulations and experiments on examples inspired by the Mars exploration mission, where only partial environment observations are available

    Safety-Critical Kinematic Control of Robotic Systems

    Get PDF
    Over the decades, kinematic controllers have proven to be practically useful for applications like set-point and trajectory tracking in robotic systems. To this end, we formulate a novel safety-critical paradigm by extending the methodology of control barrier functions (CBFs) to kinematic equations governing robotic systems. We demonstrate a purely kinematic implementation of a velocity-based CBF, and subsequently introduce a formulation that guarantees safety at the level of dynamics. This is achieved through a new form of CBFs that incorporate kinetic energy with the classical forms, thereby minimizing model dependence and conservativeness. The approach is then extended to underactuated systems. This method and the purely kinematic implementation are demonstrated in simulation on two robotic platforms: a 6-DOF robotic manipulator, and a cart-pole system
    • …
    corecore