33 research outputs found

    Residual Codean Autoencoder for Facial Attribute Analysis

    Full text link
    Facial attributes can provide rich ancillary information which can be utilized for different applications such as targeted marketing, human computer interaction, and law enforcement. This research focuses on facial attribute prediction using a novel deep learning formulation, termed as R-Codean autoencoder. The paper first presents Cosine similarity based loss function in an autoencoder which is then incorporated into the Euclidean distance based autoencoder to formulate R-Codean. The proposed loss function thus aims to incorporate both magnitude and direction of image vectors during feature learning. Further, inspired by the utility of shortcut connections in deep models to facilitate learning of optimal parameters, without incurring the problem of vanishing gradient, the proposed formulation is extended to incorporate shortcut connections in the architecture. The proposed R-Codean autoencoder is utilized in facial attribute prediction framework which incorporates patch-based weighting mechanism for assigning higher weights to relevant patches for each attribute. The experimental results on publicly available CelebA and LFWA datasets demonstrate the efficacy of the proposed approach in addressing this challenging problem.Comment: Accepted in Pattern Recognition Letter

    Deep Learning for Face Recognition: Pride or Prejudiced?

    Full text link
    Do very high accuracies of deep networks suggest pride of effective AI or are deep networks prejudiced? Do they suffer from in-group biases (own-race-bias and own-age-bias), and mimic the human behavior? Is in-group specific information being encoded sub-consciously by the deep networks? This research attempts to answer these questions and presents an in-depth analysis of `bias' in deep learning based face recognition systems. This is the first work which decodes if and where bias is encoded for face recognition. Taking cues from cognitive studies, we inspect if deep networks are also affected by social in- and out-group effect. Networks are analyzed for own-race and own-age bias, both of which have been well established in human beings. The sub-conscious behavior of face recognition models is examined to understand if they encode race or age specific features for face recognition. Analysis is performed based on 36 experiments conducted on multiple datasets. Four deep learning networks either trained from scratch or pre-trained on over 10M images are used. Variations across class activation maps and feature visualizations provide novel insights into the functioning of deep learning systems, suggesting behavior similar to humans. It is our belief that a better understanding of state-of-the-art deep learning networks would enable researchers to address the given challenge of bias in AI, and develop fairer systems

    Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!

    Full text link
    Autoencoders are unsupervised deep learning models used for learning representations. In literature, autoencoders have shown to perform well on a variety of tasks spread across multiple domains, thereby establishing widespread applicability. Typically, an autoencoder is trained to generate a model that minimizes the reconstruction error between the input and the reconstructed output, computed in terms of the Euclidean distance. While this can be useful for applications related to unsupervised reconstruction, it may not be optimal for classification. In this paper, we propose a novel Supervised COSMOS Autoencoder which utilizes a multi-objective loss function to learn representations that simultaneously encode the (i) "similarity" between the input and reconstructed vectors in terms of their direction, (ii) "distribution" of pixel values of the reconstruction with respect to the input sample, while also incorporating (iii) "discriminability" in the feature learning pipeline. The proposed autoencoder model incorporates a Cosine similarity and Mahalanobis distance based loss function, along with supervision via Mutual Information based loss. Detailed analysis of each component of the proposed model motivates its applicability for feature learning in different classification tasks. The efficacy of Supervised COSMOS autoencoder is demonstrated via extensive experimental evaluations on different image datasets. The proposed model outperforms existing algorithms on MNIST, CIFAR-10, and SVHN databases. It also yields state-of-the-art results on CelebA, LFWA, Adience, and IJB-A databases for attribute prediction and face recognition, respectively

    MagnifyMe: Aiding Cross Resolution Face Recognition via Identity Aware Synthesis

    Full text link
    Enhancing low resolution images via super-resolution or image synthesis for cross-resolution face recognition has been well studied. Several image processing and machine learning paradigms have been explored for addressing the same. In this research, we propose Synthesis via Deep Sparse Representation algorithm for synthesizing a high resolution face image from a low resolution input image. The proposed algorithm learns multi-level sparse representation for both high and low resolution gallery images, along with an identity aware dictionary and a transformation function between the two representations for face identification scenarios. With low resolution test data as input, the high resolution test image is synthesized using the identity aware dictionary and transformation which is then used for face recognition. The performance of the proposed SDSR algorithm is evaluated on four databases, including one real world dataset. Experimental results and comparison with existing seven algorithms demonstrate the efficacy of the proposed algorithm in terms of both face identification and image quality measures

    A Comprehensive Overview of Biometric Fusion

    Full text link
    The performance of a biometric system that relies on a single biometric modality (e.g., fingerprints only) is often stymied by various factors such as poor data quality or limited scalability. Multibiometric systems utilize the principle of fusion to combine information from multiple sources in order to improve recognition accuracy whilst addressing some of the limitations of single-biometric systems. The past two decades have witnessed the development of a large number of biometric fusion schemes. This paper presents an overview of biometric fusion with specific focus on three questions: what to fuse, when to fuse, and how to fuse. A comprehensive review of techniques incorporating ancillary information in the biometric recognition pipeline is also presented. In this regard, the following topics are discussed: (i) incorporating data quality in the biometric recognition pipeline; (ii) combining soft biometric attributes with primary biometric identifiers; (iii) utilizing contextual information to improve biometric recognition accuracy; and (iv) performing continuous authentication using ancillary information. In addition, the use of information fusion principles for presentation attack detection and multibiometric cryptosystems is also discussed. Finally, some of the research challenges in biometric fusion are enumerated. The purpose of this article is to provide readers a comprehensive overview of the role of information fusion in biometrics.Comment: Accepted for publication in Information Fusio

    Gender and Ethnicity Classification of Iris Images using Deep Class-Encoder

    Full text link
    Soft biometric modalities have shown their utility in different applications including reducing the search space significantly. This leads to improved recognition performance, reduced computation time, and faster processing of test samples. Some common soft biometric modalities are ethnicity, gender, age, hair color, iris color, presence of facial hair or moles, and markers. This research focuses on performing ethnicity and gender classification on iris images. We present a novel supervised autoencoder based approach, Deep Class-Encoder, which uses class labels to learn discriminative representation for the given sample by mapping the learned feature vector to its label. The proposed model is evaluated on two datasets each for ethnicity and gender classification. The results obtained using the proposed Deep Class-Encoder demonstrate its effectiveness in comparison to existing approaches and state-of-the-art methods.Comment: International Joint Conference on Biometrics, 201

    On Matching Skulls to Digital Face Images: A Preliminary Approach

    Full text link
    Forensic application of automatically matching skull with face images is an important research area linking biometrics with practical applications in forensics. It is an opportunity for biometrics and face recognition researchers to help the law enforcement and forensic experts in giving an identity to unidentified human skulls. It is an extremely challenging problem which is further exacerbated due to lack of any publicly available database related to this problem. This is the first research in this direction with a two-fold contribution: (i) introducing the first of its kind skull-face image pair database, IdentifyMe, and (ii) presenting a preliminary approach using the proposed semi-supervised formulation of transform learning. The experimental results and comparison with existing algorithms showcase the challenging nature of the problem. We assert that the availability of the database will inspire researchers to build sophisticated skull-to-face matching algorithms.Comment: International Joint Conference on Biometrics, 201

    Face Sketch Matching via Coupled Deep Transform Learning

    Full text link
    Face sketch to digital image matching is an important challenge of face recognition that involves matching across different domains. Current research efforts have primarily focused on extracting domain invariant representations or learning a mapping from one domain to the other. In this research, we propose a novel transform learning based approach termed as DeepTransformer, which learns a transformation and mapping function between the features of two domains. The proposed formulation is independent of the input information and can be applied with any existing learned or hand-crafted feature. Since the mapping function is directional in nature, we propose two variants of DeepTransformer: (i) semi-coupled and (ii) symmetrically-coupled deep transform learning. This research also uses a novel IIIT-D Composite Sketch with Age (CSA) variations database which contains sketch images of 150 subjects along with age-separated digital photos. The performance of the proposed models is evaluated on a novel application of sketch-to-sketch matching, along with sketch-to-digital photo matching. Experimental results demonstrate the robustness of the proposed models in comparison to existing state-of-the-art sketch matching algorithms and a commercial face recognition system.Comment: International Conference on Computer Vision, 201

    Are you eligible? Predicting adulthood from face images via class specific mean autoencoder

    Full text link
    Predicting if a person is an adult or a minor has several applications such as inspecting underage driving, preventing purchase of alcohol and tobacco by minors, and granting restricted access. The challenging nature of this problem arises due to the complex and unique physiological changes that are observed with age progression. This paper presents a novel deep learning based formulation, termed as Class Specific Mean Autoencoder, to learn the intra-class similarity and extract class-specific features. We propose that the feature of a particular class if brought similar/closer to the mean feature of that class can help in learning class-specific representations. The proposed formulation is applied for the task of adulthood classification which predicts whether the given face image is of an adult or not. Experiments are performed on two large databases and the results show that the proposed algorithm yields higher classification accuracy compared to existing algorithms and a Commercial-Off-The-Shelf system.Comment: Accepted for publication in Pattern Recognition Letter

    A comprehensive molecular interaction map for Hepatitis B virus and drug designing of a novel inhibitor for Hepatitis B X protein

    Get PDF
    Hepatitis B virus (HBV) infection is a leading source of liver diseases such as hepatitis, cirrhosis and hepatocellular carcinoma. In this study, we use computation methods in order to improve our understanding of the complex interactions that occur between molecules related to Hepatitis B virus (HBV). Due to the complexity of the disease and the numerous molecular players involved, we devised a method to construct a systemic network of interactions of the processes ongoing in patients affected by HBV. The network is based on high-throughput data, refined semi-automatically with carefully curated literature-based information. We find that some nodes in the network that prove to be topologically important, in particular HBx is also known to be important target protein used for the treatment of HBV. Therefore, HBx protein is the preferential choice for inhibition to stop the proteolytic processing. Hence, the 3D structure of HBx protein was downloaded from PDB. Ligands for the active site were designed using LIGBUILDER. The HBx protein's active site was explored to find out the critical interactions pattern for inhibitor binding using molecular docking methodology using AUTODOCK Vina. It should be noted that these predicted data should be validated using suitable assays for further consideration
    corecore