10,596 research outputs found
Recommended from our members
Troposheric Reactive Odd Nitrogen Over the South Pacific in Austral Springtime
Recommended from our members
Trace chemical measurements from the northern midlatitude lowermost stratosphere in early spring: Distributions, correlations, and fate
In situ measurements of a large number of trace chemicals from the midlatitude (37-57°N) lower stratosphere were performed with the NASA DC-8 aircraft during March 1994. Deepest penetrations into the stratosphere (550 ppb O3, 279 ppb N2O, and 350 K potential temperature) corresponded to a region that has been defined as the "lowermost stratosphere" (LS) by Holton et al [1995]. Analysis of data shows that the mixing ratios of long-lived tracer species (e. g. CH4, HNO3, NOy, CFCs) are linearly correlated with those of O3 and N2O. A ΔNOy/ΔO3 of 0.0054 ppb/ppb and ΔNOy/ΔN2O of -0.081 ppb/ppb is in good agreement with other reported measurements from the DC-8. These slopes are however, somewhat steeper than those reported from the ER-2 airborne studies. We find that the reactive nitrogen budget in the LS is largely balanced with HNO3 accounting for 80% of NOy, and PAN and NOx together accounting for 5%. A number of oxygenated species (e. g. acetone, H2O2) were present and may provide an important in situ source of HOx in the LS. SO2 mixing ratios were found to increase in the stratosphere at a rate that was comparable to the decline in OCS levels. No evidence of particle formation could be observed. Ethane, propane, and acetylene mixing ratios declined rapidly in the LS with Cl atoms likely playing a key role in this process. A number of reactive hydrocarbons/halocarbons (e. g. C6H6, CH3I) were present at low but measurable concentrations
Recommended from our members
Tropospheric reactive odd nitrogen over the South Pacific in austral springtime
The distribution of reactive nitrogen species over the South Pacific during austral springtime appears to be dominated by biomass burning emissions and possibly lightning and stratospheric inputs. The absence of robust correlations of reactive nitrogen species with source-specific tracers (e.g., C2H2 [combustion], CH3Cl [biomass burning], C2Cl4 [industrial],210Pb [continental], and 7Be [stratospheric]) suggests significant aging and processing of the sampled air parcels due to losses by surface deposition, OH attack, and dilution processes. Classification of the air parcels based on CO enhancements indicates that the greatest influence was found in plumes at 3–8 km altitude in the distributions of HNO3 and peroxyacetyl nitrate (PAN). Here mixing ratios of these species reached 600 parts per trillion by volume (pptv), values surprisingly large for a location several thousand kilometers removed from the nearest continental areas. The mixing ratio of total reactive nitrogen (the NOy sum), operationally defined in this paper as measured (NO + HNO3 + PAN + CH3ONO2 + C2H5ONO2) + modeled (NO2), had a median value of 285 pptv within these plumes compared with 120 pptv in nonplume air parcels. Particle NO−3 was not included in this analysis of the NOy sum due to its 10- to 15-min sampling time resolution, but, in general, it was \u3c10% of the NOy sum. Comparison of the two air parcel classifications for NOy and alkyl nitrate distributions showed no perceivable plume influence, but recycling of reactive nitrogen may have masked this direct effect. In the marine boundary layer, the NOy sum averaged 50 pptv in both air parcel classifications, being somewhat isolated from the polluted conditions above it by the trade wind inversion. In this region, however, alkyl nitrates appear to have an important marine source where they comprise 20–80% of the NOy sum in equatorial and high-latitude regions over the South Pacific
- …