80,807 research outputs found
Dislocation nucleation and vacancy formation during high-speed deformation of fcc metals
Recently, a dislocation free deformation mechanism was proposed by Kiritani
et al., based on a series of experiments where thin foils of fcc metals were
deformed at very high strain rates. In the experimental study, they observed a
large density of stacking fault tetrahedra, but very low dislocation densities
in the foils after deformation. This was interpreted as evidence for a new
dislocation-free deformation mechanism, resulting in a very high vacancy
production rate.
In this paper we investigate this proposition using large-scale computer
simulations of bulk and thin films of copper. To favour such a dislocation-free
deformation mechanism, we have made dislocation nucleation very difficult by
not introducing any potential dislocation sources in the initial configuration.
Nevertheless, we observe the nucleation of dislocation loops, and the
deformation is carried by dislocations. The dislocations are nucleated as
single Shockley partials.
The large stresses required before dislocations are nucleated result in a
very high dislocation density, and therefore in many inelastic interactions
between the dislocations. These interactions create vacancies, and a very large
vacancy concentration is quickly reached.Comment: LaTeX2e, 8 pages, PostScript figures included. Minor modifications
only. Final version, to appear in Philos. Mag. Let
Modelling of dislocation generation and interaction during high-speed deformation of metals
Recent experiments by Kiritani et al. have revealed a surprisingly high rate
of vacancy production during high-speed deformation of thin foils of fcc
metals. Virtually no dislocations are seen after the deformation. This is
interpreted as evidence for a dislocation-free deformation mechanism at very
high strain rates.
We have used molecular-dynamics simulations to investigate high-speed
deformation of copper crystals. Even though no pre-existing dislocation sources
are present in the initial system, dislocations are quickly nucleated and a
very high dislocation density is reached during the deformation.
Due to the high density of dislocations, many inelastic interactions occur
between dislocations, resulting in the generation of vacancies. After the
deformation, a very high density of vacancies is observed, in agreement with
the experimental observations. The processes responsible for the generation of
vacancies are investigated. The main process is found to be incomplete
annihilation of segments of edge dislocations on adjacent slip planes. The
dislocations are also seen to be participating in complicated dislocation
reactions, where sessile dislocation segments are constantly formed and
destroyed.Comment: 8 pages, LaTeX2e + PS figures. Presented at the Third Workshop on
High-speed Plastic Deformation, Hiroshima, August 200
Competitions in layered ruthenates: ferro- vs. antiferromagnetism and triplet vs. singlet pairing
Ru based perovskites demonstrate an amazing richness in their magnetic
properties, including 3D and quasi-2D ferromagnetism, antiferromagnetism, and
unconventional superconductivity. Tendency to ferromagnetism, stemming from the
unusually large involvement of O in magnetism in ruthenates, leads to
ferromagnetic spin fluctuations in Sr2RuO4 and eventually to p-wave
superconductivity. A related compound Ca2RuO4 was measured to be
antiferromagnetic, suggesting a possibility of antiferromagnetic fluctuations
in Sr2RuO4 as well. Here we report first principles calculations that
demonstrate that in both compounds the ferro- and antiferromagnetic
fluctuations coexist, leading to an actual instability in Ca2RuO4 and to a
close competition between p-wave and d-wave superconducting symmetries in
Sr2RuO4. The antiferromagnetism in this system appears to be mostly related
with the nesting, which is the strongest at Q=(2pi/3,2pi/3,0). Surprisingly,
for the Fermiology of Sr2RuO4 the p-wave state wins over the d-wave one
everywhere except in close vicinity of the antiferromagnetic instability. The
most stable state within the d-wave channel has vanishing order parameter at
one out of three Fermi surfaces in Sr2RuO4, while in the p channel its
amplitude is comparable at all three of them.Comment: 4 Revtex pages with 4 embedded postscript figure. Some figures are
color, but should look OK in B&W as wel
Investigation of the effects of short chain processing additives on polymers
The effects of low level concentrations of several short chain processing additives on the properties of the 4,4'-bis(3,4-dicarboxyphenoxy) diphenylsulfide dianhydride (BDSDA)/4,4'-diaminodiphenyl ether (ODA)/1,3'-diaminobenzene (m-phenylene diamine) (MPA) (422) copolyimide were investigated. It was noted that 5 percent MPD/phthalic anhydride (PA) is more effective than 5 percent ODA/PA and BDSDA/aniline (AN) in strengthening the host material. However, the introduction of 10 percent BDSDA/AN produces disproportionately high effects on free volume and free electron density in the host copolyimide
On kinetic energy stabilized superconductivity in cuprates
The possibility of kinetic energy driven superconductivity in cuprates as was
recently found in the model is discussed. We argue that the violation of
the virial theorem implied by this result is serious and means that the
description of superconductivity within the model is pathological.Comment: 3 pages, v2 includes additional reference
Device for quickly sensing the amount of O2 in a combustion product gas
A sensing device comprising an O2 sensor, a pump, a compressor, and a heater is provided to quickly sense the amount of O2 in a combustion product gas. A sample of the combustion product gas is compressed to a pressure slightly above one atmosphere by the compressor. Next, the heater heats the sample between 800 C and 900 C. Next, the pump causes the sample to be flushed against the electrode located in O2 sensor 6000 to 10,000 times per second. Reference air at approximately one atmosphere is provided to the electrode of O2 sensor. Accordingly, the O2 sensor produces a voltage which is proportional to the amount of oxygen in the combustion product gas. This voltage may be used to control the amount of O2 entering into the combustion chamber which produces the combustion product gas
Quantum mechanics without spacetime II : noncommutative geometry and the free point particle
In a recent paper we have suggested that a formulation of quantum mechanics
should exist, which does not require the concept of time, and that the
appropriate mathematical language for such a formulation is noncommutative
differential geometry. In the present paper we discuss this formulation for the
free point particle, by introducing a commutation relation for a set of
noncommuting coordinates. The sought for background independent quantum
mechanics is derived from this commutation relation for the coordinates. We
propose that the basic equations are invariant under automorphisms which map
one set of coordinates to another- this is a natural generalization of
diffeomorphism invariance when one makes a transition to noncommutative
geometry. The background independent description becomes equivalent to standard
quantum mechanics if a spacetime manifold exists, because of the proposed
automorphism invariance. The suggested basic equations also give a quantum
gravitational description of the free particle.Comment: 8 page
The application of acoustic emission technique to fatigue crack measurement
The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth
An investigation of chemically-induced improvement in saturation moisture characteristics of epoxies
MY-720/DDS epoxy samples were treated with three selected chemical compounds to render the active H-sites inactive for moisture absorption. Treating the epoxy castings with acetyl chloride and dichlorodimethyl silane leads only to surface changes indicating that these molecules are too large to penetrate the epoxy castings. Boron trifluoride, on the other hand, does penetrate the epoxy chain as is indicated by the formation of green domains in the interior of the castings. However, the process of saturating the specimens with moisture appears to leach out the chemical additives--thereby nullifying their possible ameliorative effects
- …