187,060 research outputs found
Noncommutative gravity, a `no strings attached' quantum-classical duality, and the cosmological constant puzzle
There ought to exist a reformulation of quantum mechanics which does not
refer to an external classical spacetime manifold. Such a reformulation can be
achieved using the language of noncommutative differential geometry. A
consequence which follows is that the `weakly quantum, strongly gravitational'
dynamics of a relativistic particle whose mass is much greater than Planck mass
is dual to the `strongly quantum, weakly gravitational' dynamics of another
particle whose mass is much less than Planck mass. The masses of the two
particles are inversely related to each other, and the product of their masses
is equal to the square of Planck mass. This duality explains the observed value
of the cosmological constant, and also why this value is nonzero but extremely
small in Planck units.Comment: 7 pages. Second Prize in Gravity Research Foundation Essay
Competition, 2008. Two paragraphs added to original essay to enhance clarity.
To appear in Gen. Rel. Gra
Spin-wave excitation spectra and spectral weights in square lattice antiferromagnets
Using a recently developed method for calculating series expansions of the
excitation spectra of quantum lattice models, we obtain the spin-wave spectra
for square lattice, Heisenberg-Ising antiferromagnets. The calculated
spin-wave spectrum for the Heisenberg model is close to but noticeably
different from a uniformly renormalized classical (large-) spectrum with the
renormalization for the spin-wave velocity of approximately . The
relative weights of the single-magnon and multi-magnon contributions to neutron
scattering spectra are obtained for wavevectors throughout the Brillouin zone.Comment: Two postscript figures, 4 two-column page
Type-I superconductivity in noncentrosymmetric superconductor AuBe
The noncentrosymmetric superconductor AuBe have been investigated using the
magnetization, resistivity, specific heat, and muon-spin relaxation/rotation
measurements. AuBe crystallizes in the cubic FeSi-type B20 structure with
superconducting transition temperature observed at = 3.2 0.1 K.
The low-temperature specific heat data, (T), indicate a weakly-coupled
fully gapped BCS superconductivity with an isotropic energy gap
2 = 3.76, which is close to the BCS value of 3.52.
Interestingly, type-I superconductivity is inferred from the SR
measurements, which is in contrast with the earlier reports of type-II
superconductivity in AuBe. The Ginzburg-Landau parameter is = 0.4
1/. The transverse-field SR data transformed in the maximum
entropy spectra depicting the internal magnetic field probability distribution,
P(H), also confirms the absence of the mixed state in AuBe. The thermodynamic
critical field, , calculated to be around 259 Oe. The zero-field SR
results indicate that time-reversal symmetry is preserved and supports a
spin-singlet pairing in the superconducting ground state.Comment: 9 pages, 9 figure
- …
