64,613 research outputs found

    Transient radiative energy transfer in incompressible laminar flows

    Get PDF
    Analysis and numerical procedures are presented to investigate the transient radiative interactions of nongray absorbing-emitting species in laminar fully-developed flows between two parallel plates. The particular species considered are OH, CO, CO2, and H2O and different mixtures of these. Transient and steady-state results are obtained for the temperaure distribution and bulk temperature for different plate spacings, wall temperatures, and pressures. Results, in general, indicate that the rate of radiative heating can be quite high during earlier times. This information is useful in designing thermal protection systems for transient operations

    Development of eye-safe lidar for aerosol measurements

    Get PDF
    Research is summarized on the development of an eye safe Raman conversion system to carry out lidar measurements of aerosol and clouds from an airborne platform. Radiation is produced at the first Stokes wavelength of 1.54 micron in the eye safe infrared, when methane is used as the Raman-active medium, the pump source being a Nd:YAG laser at 1.064 micron. Results are presented for an experimental study of the dependence of the 1.54 micron first Stokes radiation on the focusing geometry, methane gas pressure, and pump energy. The specific new technique developed for optimizing the first Stokes generation involves retroreflecting the backward-generated first Stokes light back into the Raman cell as a seed Stokes beam which is then amplified in the temporal tail of the pump beam. Almost 20 percent conversion to 1.54 micron is obtained. Complete, assembled hardware for the Raman conversion system was delivered to the Goddard Space Flight Center for a successful GLOBE flight (1989) to measure aerosol backscatter around the Pacific basin

    Interaction of transient radiation in nongray gaseous systems

    Get PDF
    A general formulation is presented to investigate the transient radiative interaction in nongray absorbing-emitting species between two parallel plates. Depending on the desired sophistication and accuracy, any nongray absorption model from line-by-line models to the wide band model correlations can be employed in the formulation to investigate the radiative interaction. Special attention is directed to investigate the radiative interaction in a system initially at a uniform reference temperature and suddenly the temperature of the bottom plate is reduced to a lower but constant temperature. The interaction is considered for the case of radiative equilibrium as well as for combined radiation and conduction. General as well as limiting forms of the governing equations are presented and solutions are obtained numerically by employing the method of variation of parameters. Specific results are obtained for CO, CO2, H2O, and OH. The information on species H2O and OH is of special interest for the proposed scramjet engine application. The results demonstrate the relative ability of different species for radiative interactions

    Progress of research on water vapor lidar

    Get PDF
    Research is summarized on applications of stimulated Raman scattering (SRS) of laser light into near infrared wavelengths suitable for atmospheric monitoring. Issues addressed are conversion efficiency, spectral purity, optimization of operating conditions, and amplification techniques. A Raman cell was developed and built for the laboratory program, and is now available to NASA-Langley, either as a design or as a completed cell for laboratory or flight applications. The Raman cell has been approved for flight in NASA's DC-8 aircraft. The self-seeding SRS technique developed here is suggested as an essential improvement for tunable near-IR DIAL applications at wavelengths of order 1 micrometer or greater

    Effects of nose bluntness and shock-shock interactions on blunt bodies in viscous hypersonic flows

    Get PDF
    A numerical study was conducted to investigate the effects of blunt leading edges on the viscous flow field around a hypersonic vehicle such as the proposed National Aero-Space Plane. Attention is focused on two specific regions of the flow field. In the first region, effects of nose bluntness on the forebody flow field are investigated. The second region of the flow considered is around the leading edges of the scramjet inlet. In this region, the interaction of the forebody shock with the shock produced by the blunt leading edges of the inlet compression surfaces is analyzed. Analysis of these flow regions is required to accurately predict the overall flow field as well as to get necessary information on localized zones of high pressure and intense heating. The results for the forebody flow field are discussed first, followed by the results for the shock interaction in the inlet leading edge region

    Corrosion inhibitors

    Get PDF
    Recent technological developments in formulations and industrial application of corrosion inhibitors have been discussed. A huge savings of materials, manpower and energy can be achieved by selecting proper inhibitor for a system

    Pickling, Rinsing and Fluxing of Steels before Galvanizing

    Get PDF
    In order to provide an adherent, defect free and long lasting galvanized coating on the steel surface, the pretreatment of surface is an important aspect in sequence of steps involved in galvanizing. Smooth and virgin surface having no trace of oxides acquires better coating. In all the galvanizing lines, whether batch or continuous, the pickling and rinsing of the surface is invariably carried out to remove oxides I mill scales and any trace of iron salts present there
    corecore