313 research outputs found
Evolution of the pairing pseudogap in the spectral function with interplane anisotropy
We study the pairing pseudogap in the spectral function as a function of
interplane coupling. The analytical expressions for the self-energy in the
critical regime are obtained for any degree of anisotropy. The frequency
dependence of the self-energy is found to be qualitatively different in two and
three dimensions, and the crossover from two to three dimensional behavior is
discussed. In particular, by considering the anisotropy of the Fermi velocity
and gap along the Fermi surface, we can qualitatively explain recent
photoemission experiments on high temperature superconductors concerning the
temperature dependent Fermi arcs seen in the pseudogap phase.Comment: 20 pages, revtex, 5 encapsulated postscript figures include
On the Hyperbolicity of Lorenz Renormalization
We consider infinitely renormalizable Lorenz maps with real critical exponent
and combinatorial type which is monotone and satisfies a long return
condition. For these combinatorial types we prove the existence of periodic
points of the renormalization operator, and that each map in the limit set of
renormalization has an associated unstable manifold. An unstable manifold
defines a family of Lorenz maps and we prove that each infinitely
renormalizable combinatorial type (satisfying the above conditions) has a
unique representative within such a family. We also prove that each infinitely
renormalizable map has no wandering intervals and that the closure of the
forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure
A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater
Wastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration. We found no major difference in SARS-CoV-2 and faecal indicator virus (crAssphage) recovery from wastewater samples (n = 46) using these methods, PEG slightly (albeit non-significantly), outperformed AS and IP for SARS-CoV-2 detection, as a higher genome copies per litre (gc/l) was recorded for a larger proportion of samples. Next generation sequencing of 8 paired samples revealed non-significant differences in the quality of data between AS and IP, though IP data quality was slightly better and less variable. A controlled experiment assessed the impact of wastewater suspended solids (turbidity; 0–400 NTU), surfactant load (0–200 mg/l), and storage temperature (5–20 °C) on viral recovery using the AS and IP methods. SARS-CoV-2 recoveries were >20% with AS and  0.05), whilst surfactant and storage temperature combined were significant negative correlates (p < 0.001 and p < 0.05, respectively). In conclusion, our results show that choice of methodology had small effect on viral recovery of SARS-CoV-2 and crAssphage in wastewater samples within this study. In contrast, sample turbidity, storage temperature, and surfactant load did affect viral recovery, highlighting the need for careful consideration of the viral concentration methodology used when working with wastewater samples
Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase
We investigate the upper critical field in a stripe--phase and in the
presence of a phenomenological pseudogap. Our results indicate that the
formation of stripes affects the Landau orbits and results in an enhancement of
. On the other hand, phenomenologically introduced pseudogap leads to a
reduction of the upper critical field. This effect is of particular importance
when the magnitude of the gap is of the order of the superconducting transition
temperature. We have found that a suppression of the upper critical field takes
place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure
Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems
Protists dominate eukaryotic diversity and play key functional roles in all ecosystems, particularly by catalyzing carbon and nutrient cycling. To date, however, a comparative analysis of their taxonomic and functional diversity that compares the major ecosystems on Earth (soil, freshwater and marine systems) is missing. Here, we present a comparison of protist diversity based on standardized high throughput 18S rRNA gene sequencing of soil, freshwater and marine environmental DNA. Soil and freshwater protist communities were more similar to each other than to marine protist communities, with virtually no overlap of Operational Taxonomic Units (OTUs) between terrestrial and marine habitats. Soil protists showed higher γ diversity than aquatic samples. Differences in taxonomic composition of the communities led to changes in a functional diversity among ecosystems, as expressed in relative abundance of consumers, phototrophs and parasites. Phototrophs (eukaryotic algae) dominated freshwater systems (49% of the sequences) and consumers soil and marine ecosystems (59% and 48%, respectively). The individual functional groups were composed of ecosystem- specific taxonomic groups. Parasites were equally common in all ecosystems, yet, terrestrial systems hosted more OTUs assigned to parasites of macro-organisms while aquatic systems contained mostly microbial parasitoids. Together, we show biogeographic patterns of protist diversity across major ecosystems on Earth, preparing the way for more focused studies that will help understanding the multiple roles of protists in the biosphere
Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea
Prior studies have reported high response rates with recombinant interferon-a (rIFN-a) therapy in patients with essential thrombocythemia (ET) and polycythemia vera (PV). To further define the role of rIFN-a,we investigated the outcomes of pegylated-rIFN-a2a (PEG) therapy in ET and PV patients previously treated with hydroxyurea (HU). The Myeloproliferative Disorders Research Consortium (MPD-RC)-111 study was an investigator-initiated, international, multicenter, phase 2 trial evaluating the ability of PEG therapy to induce complete (CR) and partial (PR) hematologic responses in patients with high-risk ET or PVwho were either refractory or intolerant to HU. The study included 65 patients with ET and 50 patients with PV. The overall response rates (ORRs; CR/PR) at 12 monthswere 69.2%(43.1% and 26.2%) in ET patients and 60% (22% and 38%) in PV patients. CR rates were higher in CALR-mutated ET patients (56.5% vs 28.0%; P 5 .01), compared with those in subjects lacking a CALR mutation. The median absolute reduction in JAK2V617F variant allele fraction was 26% (range, 284%to 47%) in patients achieving a CR vs 14%(range, 218% to 56%) in patients with PR or nonresponse (NR). Therapy was associated with a significant rate of adverse events (AEs); most were manageable, and PEG discontinuation related to AEs occurred in only 13.9% of subjects. We conclude that PEG is an effective therapy for patients with ET or PV who were previously refractory and/or intolerant of HU
The geology and geophysics of Kuiper Belt object (486958) Arrokoth
The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, are primitive objects preserving information about Solar System formation. The New Horizons spacecraft flew past one of these objects, the 36 km long contact binary (486958) Arrokoth (2014 MU69), in January 2019. Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters diameter) within a radius of 8000 km, and has a lightly-cratered smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism
Zn-Neighbor Cu NQR in Zn-Substituted YBa2Cu3O7-d and YBa2Cu4O8
We studied local electronic states near Zn in optimally doped
YBa(CuZn_x)O and underdoped
YBa(CuZn_x)O via satellite signals of plane-site Cu(2)
nuclear quadrupole resonance (NQR) spectra. From the relative intensity of Cu
NQR spectra, the satellite signals are assigned to Zn-neighbor Cu NQR lines.
The Cu nuclear spin-lattice relaxation time of the satellite signal is shorter
than that of the main signal, which indicates that the magnetic correlation is
locally enhanced near Zn both for the underdoped and the optimally doped
systems. The pure YBaCuO is a stoichiometric, homogenous,
underdoped electronic system; nevertheless, the Zn-induced inhomogeneous
magnetic response in the CuO plane is more marked than that of the
optimally doped YBaCuO.Comment: 9 pages including 8 figures, to be published in Phys. Rev.
Daldinia eschscholzii (Ascomycota, Xylariaceae) isolado na Amazônia brasileira: caracterÃsticas taxonômicas e condições de crescimento micelial
The Amazon has a high diversity of fungi, including species of the genus Daldinia (Ascomycota, Xylariaceae), which produce secondary metabolites with recognized nematicidal and antimicrobial activity. The ecological role of Daldinia is important, as stromata serve as refuges to many insects and arthropodes, and the fungi contribute to the degradation of vegetable organic matter. The aim of this study was to analyze the taxonomic features and mycelial growth conditions in vitro of a Daldinia specimen collected in the Brazilian Amazon. Morphological and molecular studies of the fungus identified it as D. eschscholtzii. To evaluate mycelial growth, we cultivated the fungus at 20, 25, 30, 35, and 40 °C in malt extract-peptone agar (MEPA), malt extract-peptone (MEP), potato dextrose (PD), and minimum medium (MM). The best mycelial growth occurred at 35 °C, although the greatest amount of biomass was obtained at 25 °C and 30 °C. PD proved to be the best medium for biomass production.A Amazônia apresenta alta diversidade de fungos, incluindo Daldinia (Ascomycota, Xylariaceae), cujas espécies produzem metabólitos secundários com reconhecida atividade antimicrobiana e nematicida. O papel ecológico é importante, visto que estromas servem de abrigo para muitos insetos e artrópodes, além de contribuir na degradação da matéria orgânica vegetal. O objetivo desse estudo foi analizar as caracterÃsticas taxonômicas e as condições do crescimento micelial in vitro de um espécime de Daldinia coletado na Amazônia brasileira. Estudos morfológicos e moleculares do fungo o indetificaram como D. eschscholtzii. Para avaliação do crescimento micelial o fungo foi cultivado nas temperaturas de 20, 25, 30, 35 e 40 °C e nos meios de cultura extrato de malte-peptona ágar (EMPA), extrato de malte-peptona (EMP), batata dextrose (BD) e meio mÃnimo (MM). O melhor crescimento micelial ocorreu a 35 °C, entretanto, a maior quantidade de biomassa foi obtida a 25 e 30 °C. O meio BD provou ser o melhor meio para produção de biomassa
The ‘mosaic habitat’ concept in human evolution: past and present
The habitats preferred by hominins and other species are an important theme in palaeoanthropology, and the ‘mosaic habitat’ (also referred to as habitat heterogeneity) has been a central concept in this regard for the last four decades. Here we explore the development of this concept – loosely defined as a range of different habitat types, such as woodlands, riverine forest and savannah within a limited spatial area– in studies of human evolution in the last sixty years or so. We outline the key developments that took place before and around the time when the term ‘mosaic’ came to wider palaeoanthropological attention. To achieve this we used an analysis of the published literature, a study of illustrations of hominin evolution from 1925 onwards and an email survey of senior researchers in palaeoanthropology and related fields. We found that the term mosaic starts to be applied in palaeoanthropological thinking during the 1970’s due to the work of a number of researchers, including Karl Butzer and Glynn Isaac , with the earliest usage we have found of ‘mosaic’ in specific reference to hominin habitats being by Adriaan Kortlandt (1972). While we observe a steady increase in the numbers of publications reporting mosaic palaeohabitats, in keeping with the growing interest and specialisation in various methods of palaeoenvironmental reconstruction, we also note that there is a lack of critical studies that define this habitat, or examine the temporal and spatial scales associated with it. The general consensus within the field is that the concept now requires more detailed definition and study to evaluate its role in human evolution
- …