107 research outputs found
Cluster Spin Glass Distribution Functions in LaSrCuO
Signatures of the cluster spin glass have been found in a variety of
experiments, with an effective onset temperature that is frequency
dependent. We reanalyze the experimental results and find that they are
characterized by a distribution of activation energies, with a nonzero glass
transition temperature . While the distribution of activation
energies is the same, the distribution of weights depends on the process.
Remarkably, the weights are essentially doping independent.Comment: 5 pages, 5 ps figure
International Energy Workshop: A Progress Report
The International Energy Workshop (IEW) is a network of analysts concerned with international energy issues. Its aims are to compare long-term energy projections and to understand the reasons for diverging views. The IEW conducts iterative polling on key energy issues and publishes the results of these polls semi-annually. The poll results are discussed in annual meetings alternating between Europe and North America. Participation in the IEW is informal and is open to anyone supporting the aims of their Workshop.
This report by Professor Manne of Stanford University and Dr. Schrattenholzer of IIASA describes the status and progress of the IEW in mid-1985. It served as background for the meeting held at IIASA in June 1985
Tidal torques. A critical review of some techniques
We point out that the MacDonald formula for body-tide torques is valid only
in the zeroth order of e/Q, while its time-average is valid in the first order.
So the formula cannot be used for analysis in higher orders of e/Q. This
necessitates corrections in the theory of tidal despinning and libration
damping.
We prove that when the inclination is low and phase lags are linear in
frequency, the Kaula series is equivalent to a corrected version of the
MacDonald method. The correction to MacDonald's approach would be to set the
phase lag of the integral bulge proportional to the instantaneous frequency.
The equivalence of descriptions gets violated by a nonlinear
frequency-dependence of the lag.
We explain that both the MacDonald- and Darwin-torque-based derivations of
the popular formula for the tidal despinning rate are limited to low
inclinations and to the phase lags being linear in frequency. The
Darwin-torque-based derivation, though, is general enough to accommodate both a
finite inclination and the actual rheology.
Although rheologies with Q scaling as the frequency to a positive power make
the torque diverge at a zero frequency, this reveals not the impossible nature
of the rheology, but a flaw in mathematics, i.e., a common misassumption that
damping merely provides lags to the terms of the Fourier series for the tidal
potential. A hydrodynamical treatment (Darwin 1879) had demonstrated that the
magnitudes of the terms, too, get changed. Reinstating of this detail tames the
infinities and rehabilitates the "impossible" scaling law (which happens to be
the actual law the terrestrial planets obey at low frequencies).Comment: arXiv admin note: sections 4 and 9 of this paper contain substantial
text overlap with arXiv:0712.105
Bodily tides near spin-orbit resonances
Spin-orbit coupling can be described in two approaches. The method known as
"the MacDonald torque" is often combined with an assumption that the quality
factor Q is frequency-independent. This makes the method inconsistent, because
the MacDonald theory tacitly fixes the rheology by making Q scale as the
inverse tidal frequency.
Spin-orbit coupling can be treated also in an approach called "the Darwin
torque". While this theory is general enough to accommodate an arbitrary
frequency-dependence of Q, this advantage has not yet been exploited in the
literature, where Q is assumed constant or is set to scale as inverse tidal
frequency, the latter assertion making the Darwin torque equivalent to a
corrected version of the MacDonald torque.
However neither a constant nor an inverse-frequency Q reflect the properties
of realistic mantles and crusts, because the actual frequency-dependence is
more complex. Hence the necessity to enrich the theory of spin-orbit
interaction with the right frequency-dependence. We accomplish this programme
for the Darwin-torque-based model near resonances. We derive the
frequency-dependence of the tidal torque from the first principles, i.e., from
the expression for the mantle's compliance in the time domain. We also explain
that the tidal torque includes not only the secular part, but also an
oscillating part.
We demonstrate that the lmpq term of the Darwin-Kaula expansion for the tidal
torque smoothly goes through zero, when the secondary traverses the lmpq
resonance (e.g., the principal tidal torque smoothly goes through nil as the
secondary crosses the synchronous orbit).
We also offer a possible explanation for the unexpected frequency-dependence
of the tidal dissipation rate in the Moon, discovered by LLR
Four-nucleon scattering with a correlated Gaussian basis method
Elastic-scattering phase shifts for four-nucleon systems are studied in an
- type cluster model in order to clarify the role of the tensor
force and to investigate cluster distortions in low energy and
scattering. In the present method, the description of the cluster wave function
is extended from a simple (0) harmonic-oscillator shell model to a few-body
model with a realistic interaction, in which the wave function of the
subsystems are determined with the Stochastic Variational Method. In order to
calculate the matrix elements of the four-body system, we have developed a
Triple Global Vector Representation method for the correlated Gaussian basis
functions. To compare effects of the cluster distortion with realistic and
effective interactions, we employ the AV8 potential as a realistic
interaction and the Minnesota potential as an effective interaction. Especially
for , the calculated phase shifts show that the and channels
are strongly coupled to the channel for the case of the realistic
interaction. On the contrary, the coupling of these channels plays a relatively
minor role for the case of the effective interaction. This difference between
both potentials originates from the tensor term in the realistic interaction.
Furthermore, the tensor interaction makes the energy splitting of the negative
parity states of He consistent with experiments. No such splitting is
however reproduced with the effective interaction
Some aspects of the Liouville equation in mathematical physics and statistical mechanics
This paper presents some mathematical aspects of Classical Liouville theorem
and we have noted some mathematical theorems about its initial value problem.
Furthermore, we have implied on the formal frame work of Stochastic Liouville
equation (SLE)
Assessing associations between the AURKAHMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood appr
Astronomical Distance Determination in the Space Age: Secondary Distance Indicators
The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
- …