202 research outputs found
A Field Study of the Street Slogans of the Dravida Kazhagam
The aim of this field study is to highlight how the Dravida Kazhaga street slogans became a powerful and unique tool for the development of that movement. Superstitions, racial consciousness and rights, women's rights education and language, economic development programs and universal humanitarian principles are found in those texts. Words of denial of God, anti-religious words, advices for human harmony, and words of eradicating superstition are seen as eloquent words that highlight Thanthai Periyar's ideas. Dravida Kazhagam's education policy and language policy are all Periyar policies only Based on that, anti-Hindi slogans have been divided into bilingual acceptance slogans and anti-education policy slogans. It is important to note that research ethics are not required for this research study, which has been prepared through field research
Accurate Prediction of the Functional Significance of Single Nucleotide Polymorphisms and Mutations in the ABCA1 Gene
The human genome contains an estimated 100,000 to 300,000 DNA variants that alter an amino acid in an encoded protein. However, our ability to predict which of these variants are functionally significant is limited. We used a bioinformatics approach to define the functional significance of genetic variation in the ABCA1 gene, a cholesterol transporter crucial for the metabolism of high density lipoprotein cholesterol. To predict the functional consequence of each coding single nucleotide polymorphism and mutation in this gene, we calculated a substitution position-specific evolutionary conservation score for each variant, which considers site-specific variation among evolutionarily related proteins. To test the bioinformatics predictions experimentally, we evaluated the biochemical consequence of these sequence variants by examining the ability of cell lines stably transfected with the ABCA1 alleles to elicit cholesterol efflux. Our bioinformatics approach correctly predicted the functional impact of greater than 94% of the naturally occurring variants we assessed. The bioinformatics predictions were significantly correlated with the degree of functional impairment of ABCA1 mutations (r (2) = 0.62, p = 0.0008). These results have allowed us to define the impact of genetic variation on ABCA1 function and to suggest that the in silico evolutionary approach we used may be a useful tool in general for predicting the effects of DNA variation on gene function. In addition, our data suggest that considering patterns of positive selection, along with patterns of negative selection such as evolutionary conservation, may improve our ability to predict the functional effects of amino acid variation
Recommended from our members
Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells.
Huntington's disease is a neurodegenerative disorder caused by CAG expansion that results in expansion of a polyglutamine tract at the extreme N terminus of huntingtin (htt). htt with polyglutamine expansion is proapoptotic in different cell types. Here, we show that caspase inhibitors diminish the toxicity of htt. Additionally, we define htt itself as an important caspase substrate by generating a site-directed htt mutant that is resistant to caspase-3 cleavage at positions 513 and 530 and to caspase-6 cleavage at position 586. In contrast to cleavable htt, caspase-resistant htt with an expanded polyglutamine tract has reduced toxicity in apoptotically stressed neuronal and nonneuronal cells and forms aggregates at a much reduced frequency. These results suggest that inhibiting caspase cleavage of htt may therefore be of potential therapeutic benefit in Huntington's disease
Low Levels of Human HIP14 Are Sufficient to Rescue Neuropathological, Behavioural, and Enzymatic Defects Due to Loss of Murine HIP14 in Hip14−/− Mice
Huntingtin Interacting Protein 14 (HIP14) is a palmitoyl acyl transferase (PAT) that was first identified due to altered interaction with mutant huntingtin, the protein responsible for Huntington Disease (HD). HIP14 palmitoylates a specific set of neuronal substrates critical at the synapse, and downregulation of HIP14 by siRNA in vitro results in increased cell death in neurons. We previously reported that mice lacking murine Hip14 (Hip14−/−) share features of HD. In the current study, we have generated human HIP14 BAC transgenic mice and crossed them to the Hip14−/− model in order to confirm that the defects seen in Hip14−/− mice are in fact due to loss of Hip14. In addition, we sought to determine whether human HIP14 can provide functional compensation for loss of murine Hip14. We demonstrate that despite a relative low level of expression, as assessed via Western blot, BAC-derived human HIP14 compensates for deficits in neuropathology, behavior, and PAT enzyme function seen in the Hip14−/− model. Our findings yield important insights into HIP14 function in vivo
The Influence of Huntingtin Protein Size on Nuclear Localization and Cellular Toxicity
Huntington disease is an autosomal dominant neurodegenerative disorder caused by the pathological expansion of a polyglutamine tract. In this study we directly assess the influence of protein size on the formation and subcellular localization of huntingtin aggregates. We have created numerous deletion constructs expressing successively smaller fragments of huntingtin and show that these smaller proteins containing 128 glutamines form both intranuclear and perinuclear aggregates. In contrast, larger NH2-terminal fragments of huntingtin proteins with 128 glutamines form exclusively perinuclear aggregates. These aggregates can form in the absence of endogenous huntingtin. Furthermore, expression of mutant huntingtin results in increased susceptibility to apoptotic stress that is greater with decreasing protein length and increasing polyglutamine size. As both intranuclear and perinuclear aggregates are clearly associated with increased cellular toxicity, this supports an important role for toxic polyglutamine-containing fragments forming aggregates and playing a key role in the pathogenesis of Huntington disease
Haploinsufficiency of CYP8B1 associates with increased insulin sensitivity in humans
10.1172/JCI152961The Journal of clinical investigation13221e152961
Type 2 Diabetes Is Associated with Reduced ATP-Binding Cassette Transporter A1 Gene Expression, Protein and Function
Objective
Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ).
Methods and Results
Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression.
Conclusions
ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT
The effect of ABCA1 gene polymorphisms on ischaemic stroke risk and relationship with lipid profile
<p>Abstract</p> <p>Background</p> <p>Ischaemic stroke is a common disorder with genetic and environmental components contributing to overall risk. Atherothromboembolic abnormalities, which play a crucial role in the pathogenesis of ischaemic stroke, are often the end result of dysregulation of lipid metabolism. The ATP Binding Cassette Transporter (<it>ABCA1</it>) is a key gene involved in lipid metabolism. It encodes the cholesterol regulatory efflux protein which mediates the transfer of cellular phospholipids and cholesterol to acceptor apolipoproteins such as apolipoprotein A-I (ApoA-I). Common polymorphisms in this gene affect High Density Lipoprotein Cholesterol (HDL-C) and Apolipoprotein A-I levels and so influence the risk of atherosclerosis. This study has assessed the distribution of <it>ABCA1 </it>polymorphisms and haplotype arrangements in patients with ischaemic stroke and compared them to an appropriate control group. It also examined the relationship of these polymorphisms with serum lipid profiles in cases and controls.</p> <p>Methods</p> <p>We studied four common polymorphisms in <it>ABCA1 </it>gene: G/A-L158L, G/A-R219K, G/A-G316G and G/A-R1587K in 400 Caucasian ischaemic stroke patients and 487 controls. Dynamic Allele Specific Hybridisation (DASH) was used as the genotyping assay.</p> <p>Results</p> <p>Genotype and allele frequencies of all polymorphisms were similar in cases and controls, except for a modest difference in the <it>ABCA1 </it>R219K allele frequency (P-value = 0.05). Using the PHASE2 program, haplotype frequencies for the four loci (158, 219, 316, and 1587) were estimated in cases and controls. There was no significant difference in overall haplotypes arrangement in patients group compared to controls (p = 0.27). 2211 and 1211 haplotypes (1 = common allele, 2 = rare allele) were more frequent in cases (p = 0.05). Adjusted ORs indicated 40% and 46% excess risk of stroke for these haplotypes respectively. However, none of the adjusted ORs were statistically significant. Individuals who had R219K "22" genotype had a higher LDL level (p = 0.001).</p> <p>Conclusion</p> <p>Our study does not support a major role for the <it>ABCA1 </it>gene as a risk factor for ischaemic stroke. Some haplotypes may confer a minor amount of increased risk or protection. Polymorphisms in this gene may influence serum lipid profile.</p
Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance.
Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.This study was funded by the UK Medical Research Council through grants MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1. This work was supported by the MRC Metabolic Diseases Unit (MC_UU_12012/5) and the Cambridge NIHR Biomedical Research Centre and EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant 115372). Funding for the InterAct project was provided by the EU FP6 program (grant LSHM_CT_2006_037197). This work was funded, in part, through an EFSD Rising Star award to R.A.S. supported by Novo Nordisk. D.B.S. is supported by Wellcome Trust grant 107064. M.I.M. is a Wellcome Trust Senior Investigator and is supported by the following grants from the Wellcome Trust: 090532 and 098381. M.v.d.B. is supported by a Novo Nordisk postdoctoral fellowship run in partnership with the University of Oxford. I.B. is supported by Wellcome Trust grant WT098051. S.O'R. acknowledges funding from the Wellcome Trust (Wellcome Trust Senior Investigator Award 095515/Z/11/Z and Wellcome Trust Strategic Award 100574/Z/12/Z)
Amyloid Triggers Extensive Cerebral Angiogenesis Causing Blood Brain Barrier Permeability and Hypervascularity in Alzheimer's Disease
Evidence of reduced blood-brain barrier (BBB) integrity preceding other Alzheimer's disease (AD) pathology provides a strong link between cerebrovascular angiopathy and AD. However, the “Vascular hypothesis”, holds that BBB leakiness in AD is likely due to hypoxia and neuroinflammation leading to vascular deterioration and apoptosis. We propose an alternative hypothesis: amyloidogenesis promotes extensive neoangiogenesis leading to increased vascular permeability and subsequent hypervascularization in AD. Cerebrovascular integrity was characterized in Tg2576 AD model mice that overexpress the human amyloid precursor protein (APP) containing the double missense mutations, APPsw, found in a Swedish family, that causes early-onset AD. The expression of tight junction (TJ) proteins, occludin and ZO-1, were examined in conjunction with markers of apoptosis and angiogenesis. In aged Tg2576 AD mice, a significant increase in the incidence of disrupted TJs, compared to age matched wild-type littermates and young mice of both genotypes, was directly linked to an increased microvascular density but not apoptosis, which strongly supports amyloidogenic triggered hypervascularity as the basis for BBB disruption. Hypervascularity in human patients was corroborated in a comparison of postmortem brain tissues from AD and controls. Our results demonstrate that amylodogenesis mediates BBB disruption and leakiness through promoting neoangiogenesis and hypervascularity, resulting in the redistribution of TJs that maintain the barrier and thus, provides a new paradigm for integrating vascular remodeling with the pathophysiology observed in AD. Thus the extensive angiogenesis identified in AD brain, exhibits parallels to the neovascularity evident in the pathophysiology of other diseases such as age-related macular degeneration
- …