2 research outputs found

    A 177 Years Extended of Teak Chronology Revealing to the Climate Variability in Phrae Province, Northern of Thailand

    Get PDF
    Teak ring-width is one of the promising paleoclimate proxies in the tropical region. Tree-ring chronology spanning from 1840 to 2016 (177 years) was derived from seventy-six trees from Phrae Province, northern Thailand. A total of 141 core samples were cross-dated, a standardized master was constructed, and the tree residual master chronology was developed by ARSTAN program. The tree-ring chronology has a significant positive correlation with the monthly rainfall and relative humidity during the monsoon season (May - June). In addition, the growth of tree-ring width also significantly inversely correlated with Niño 3, Niño 3.4, and Niño 4 indices during the second half of the dry season (January - March). We reconstructed summer monsoon season (May - June) rainfall based on a linear regression model which explained 21.95% of the actual rainfall variance. The trend of the reconstructed rainfall record shows a decrease of 0.6 mm per decade and substantially showed four wet periods and five dry periods. These results suggest that this teak chronology has a good potential to be a high-resolution proxy for reconstructing the past local climate in northern Thailand

    Variation in Climate Signals in Teak Tree-Ring Chronologies in Two Different Growth Areas

    No full text
    We developed two tree-ring chronologies of teak (Tectona grandis L.f.) from Mae Tuen (462-year, 1555⁻2016) and Umphang (165-year, 1852⁻2016) in Tak province, northwestern Thailand. The chronologies were based on 67 and 71 living teak trees, respectively. We used crossdating methods to check and verify the tree-ring width data and tree-ring chronology construction using the ARSTAN program. In this study, the two teak tree-ring chronologies from two different growth areas could not be crossdated. The relationship among these chronologies is, thus, relatively low (r = 0.33, n = 165, p < 0.01). This result shows that the growth of tree-ring structure from two sites can be affected by a variety of non-climatic patterns due to site variation, such as topography, nutrient, light, and internal factors. However, these chronologies have a significant positive correlation with rainfall, during the pre-monsoon season (April to May). As demonstrated by the spatial correlation patterns, these chronologies represent April to May rainfall, which was a limiting factor of teak growth from northwestern Thailand. While the difference in surface temperatures of the Indian Ocean Dipole (IOD) might not be affected by rainfall, its unstable relationship with the El Niño-Southern Oscillation (ENSO) was noted to have occurred
    corecore