8,816 research outputs found

    Complex Langevin Simulations of QCD at Finite Density -- Progress Report

    Full text link
    We simulate lattice QCD at finite quark-number chemical potential to study nuclear matter, using the complex Langevin equation (CLE). The CLE is used because the fermion determinant is complex so that standard methods relying on importance sampling fail. Adaptive methods and gauge-cooling are used to prevent runaway solutions. Even then, the CLE is not guaranteed to give correct results. We are therefore performing extensive testing to determine under what, if any, conditions we can achieve reliable results. Our earlier simulations at β=6/g2=5.6\beta=6/g^2=5.6, m=0.025m=0.025 on a 12412^4 lattice reproduced the expected phase structure but failed in the details. Our current simulations at β=5.7\beta=5.7 on a 16416^4 lattice fail in similar ways while showing some improvement. We are therefore moving to even weaker couplings to see if the CLE might produce the correct results in the continuum (weak-coupling) limit, or, if it still fails, whether it might reproduce the results of the phase-quenched theory. We also discuss action (and other dynamics) modifications which might improve the performance of the CLE.Comment: Talk presented at Lattice 2017, Granada, Spain and submitted to proceedings. 8 pages, 4 figure
    • …
    corecore