442 research outputs found

    Squeezing and entangling nuclear spins in helium 3

    Full text link
    We present a realistic model for transferring the squeezing or the entanglement of optical field modes to the collective ground state nuclear spin of 3^3He using metastability exchange collisions. We discuss in detail the requirements for obtaining good quantum state transfer efficiency and study the possibility to readout the nuclear spin state optically

    Understanding mobility in a social petri dish

    Get PDF
    Despite the recent availability of large data sets on human movements, a full understanding of the rules governing motion within social systems is still missing, due to incomplete information on the socio-economic factors and to often limited spatio-temporal resolutions. Here we study an entire society of individuals, the players of an online-game, with complete information on their movements in a network-shaped universe and on their social and economic interactions. Such a "socio-economic laboratory" allows to unveil the intricate interplay of spatial constraints, social and economic factors, and patterns of mobility. We find that the motion of individuals is not only constrained by physical distances, but also strongly shaped by the presence of socio-economic areas. These regions can be recovered perfectly by community detection methods solely based on the measured human dynamics. Moreover, we uncover that long-term memory in the time-order of visited locations is the essential ingredient for modeling the trajectories

    Long-lived quantum memory with nuclear atomic spins

    Full text link
    We propose to store non-classical states of light into the macroscopic collective nuclear spin (101810^{18} atoms) of a 3^3He vapor, using metastability exchange collisions. These collisions, commonly used to transfer orientation from the metastable state 23S_12^{3}S\_1 to the ground state state of 3^3He, can also transfer quantum correlations. This gives a possible experimental scheme to map a squeezed vacuum field state onto a nuclear spin state with very long storage times (hours).Comment: 4 page

    Influence of ewe feeding systems on carcass quality of suckling lambs

    Get PDF
    Numerous studies have evidenced significant differences in the carcass and meat quality of grass-fed and concentrate-fed lambs. The main differences regard carcass fatness (Murphy et al., 1994), subcutaneous fat colour (Prache and Theriez, 1999), meat colour (Priolo et al., 2002a) and fatty acid composition (Enser et al., 1998). The use of grazing in lamb feeding favours the presence of substances in the meat which are beneficial to human health. Different methods, based on the spectrophotometric properties of fat have been proposed to verify the origin of the product (Priolo et al., 2002b). The objective of the present study is to verify if and to what extent the carcass quality of suckling lambs is affected by ewe feeding systems

    Simulations of thermal Bose fields in the classical limit

    Get PDF
    We demonstrate that the time-dependent projected Gross-Pitaevskii equation derived earlier [Davis, et al., J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. We find that this equation will evolve randomised initial wave functions to equilibrium, and compare our numerical data to the predictions of a gapless, second-order theory of Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)]. We find that we can determine the temperature of the equilibrium state when this theory is valid. Outside the range of perturbation theory we describe how to measure the temperature of our simulations. We also determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. As the Gross-Pitaevskii equation is non-perturbative, we expect that it can describe the correct thermal behaviour of a Bose gas as long as all relevant modes are highly occupied.Comment: 15 pages, 12 figures, revtex4, follow up to Phys. Rev. Lett. 87 160402 (2001). v2: Modified after referee comments. Extra data added to two figures, section on temperature determination expande

    Emergence of good conduct, scaling and Zipf laws in human behavioral sequences in an online world

    Get PDF
    We study behavioral action sequences of players in a massive multiplayer online game. In their virtual life players use eight basic actions which allow them to interact with each other. These actions are communication, trade, establishing or breaking friendships and enmities, attack, and punishment. We measure the probabilities for these actions conditional on previous taken and received actions and find a dramatic increase of negative behavior immediately after receiving negative actions. Similarly, positive behavior is intensified by receiving positive actions. We observe a tendency towards anti-persistence in communication sequences. Classifying actions as positive (good) and negative (bad) allows us to define binary 'world lines' of lives of individuals. Positive and negative actions are persistent and occur in clusters, indicated by large scaling exponents alpha~0.87 of the mean square displacement of the world lines. For all eight action types we find strong signs for high levels of repetitiveness, especially for negative actions. We partition behavioral sequences into segments of length n (behavioral `words' and 'motifs') and study their statistical properties. We find two approximate power laws in the word ranking distribution, one with an exponent of kappa-1 for the ranks up to 100, and another with a lower exponent for higher ranks. The Shannon n-tuple redundancy yields large values and increases in terms of word length, further underscoring the non-trivial statistical properties of behavioral sequences. On the collective, societal level the timeseries of particular actions per day can be understood by a simple mean-reverting log-normal model.Comment: 6 pages, 5 figure

    Microcanonical temperature for a classical field: application to Bose-Einstein condensation

    Get PDF
    We show that the projected Gross-Pitaevskii equation (PGPE) can be mapped exactly onto Hamilton's equations of motion for classical position and momentum variables. Making use of this mapping, we adapt techniques developed in statistical mechanics to calculate the temperature and chemical potential of a classical Bose field in the microcanonical ensemble. We apply the method to simulations of the PGPE, which can be used to represent the highly occupied modes of Bose condensed gases at finite temperature. The method is rigorous, valid beyond the realms of perturbation theory, and agrees with an earlier method of temperature measurement for the same system. Using this method we show that the critical temperature for condensation in a homogeneous Bose gas on a lattice with a UV cutoff increases with the interaction strength. We discuss how to determine the temperature shift for the Bose gas in the continuum limit using this type of calculation, and obtain a result in agreement with more sophisticated Monte Carlo simulations. We also consider the behaviour of the specific heat.Comment: v1: 9 pages, 5 figures, revtex 4. v2: additional text in response to referee's comments, now 11 pages, to appear in Phys. Rev.

    The stochastic Gross-Pitaevskii equation II

    Full text link
    We provide a derivation of a more accurate version of the stochastic Gross-Pitaevskii equation, as introduced by Gardiner et al. (J. Phys. B 35,1555,(2002). The derivation does not rely on the concept of local energy and momentum conservation, and is based on a quasi-classical Wigner function representation of a "high temperature" master equation for a Bose gas, which includes only modes below an energy cutoff E_R that are sufficiently highly occupied (the condensate band). The modes above this cutoff (the non-condensate band) are treated as being essentially thermalized. The interaction between these two bands, known as growth and scattering processes, provide noise and damping terms in the equation of motion for the condensate band, which we call the stochastic Gross-Pitaevskii equation. This approach is distinguished by the control of the approximations made in its derivation, and by the feasibility of its numerical implementation.Comment: 24 pages of LaTeX, one figur

    Dynamical formation and interaction of bright solitary waves and solitons in the collapse of Bose-Einstein condensates with attractive interactions

    Full text link
    We model the dynamics of formation of multiple, long-lived, bright solitary waves in the collapse of Bose-Einstein condensates with attractive interactions as studied in the experiment of Cornish et al. [Phys. Rev. Lett. 96 (2006) 170401]. Using both mean-field and quantum field simulation techniques, we find that while a number of separated wave packets form as observed in the experiment, they do not have a repulsive \pi phase difference that has been previously inferred. We observe that the inclusion of quantum fluctuations causes soliton dynamics to be predominantly repulsive in one dimensional simulations independent of their initial relative phase. However, indicative three-dimensional simulations do not support this conclusion and in fact show that quantum noise has a negative impact on bright solitary wave lifetimes. Finally, we show that condensate oscillations, after the collapse, may serve to deduce three-body recombination rates, and that the remnant atom number may still exceed the critical number for collapse for as long as three seconds independent of the relative phases of the bright solitary waves.Comment: 14 pages, 5 figure

    Relationship of choroidal thickness with pulsatile hemodynamics in essential hypertensive patients

    Get PDF
    Controversy exists about the association of choroidal thickness (CTh) with blood pressure (BP) values. There is some evidence suggesting that central hemodynamics changes are associated with microvascular disease. Our study was aimed to assess the relationships between CTh and clinic and 24-h BP and between CTh and estimated 24-h aortic pulse pressure (aPP), 24-h aortic systolic BP (aSBP), and 24-h aortic augmentation index (aAIx) in a group of hypertensive patients. We enrolled 158 hypertensive subjects (mean age 48 ± 13 years) all of which underwent evaluation of the choroidal district by Swept-Source optical coherence tomography (SS-OCT) and 24-h BP monitoring, in order to measure peripheral BP and to estimate central hemodynamic parameters. Inverse significant correlations of clinic PP, 24-h aPP, 24-h aSBP, and 24-h aAIx with thicknesses of central ring, inner ring, and outer ring of the choroid and its overall average were found. The strongest of these correlations was that relating 24-h aPP with overall average choroidal thickness (r = −.531; P <.001). When we divided the study population in subjects with 24-h aPP above and below the median value (35 mm Hg), CTh were thinner in subjects with higher values of 24-aPP as compared to those with lower ones, even after adjustment for age, and other potential confounders. The relationships of CTh with 24-h aPP remained significant also taking into account the effects of various covariates in linear multiple regression analyses. Our findings support the concept of a cross-talk between macro- and microcirculation
    corecore