157 research outputs found

    Increased Caspase-3 Immunoreactivity of Erythrocytes in STZ Diabetic Rats

    Get PDF
    Eryptosis is a term to define apoptosis of erythrocytes. Oxidative stress and hyperglycemia, both of which exist in the diabetic intravascular environment, can trigger eryptosis of erythrocytes. In this experimental study, it is presented that the majority of erythrocytes shows caspase-3 immunoreactivity in streptozocin- (STZ)-induced diabetic rats. Besides that, caspase-3 positive erythrocytes are aggregated and attached to vascular endothelium. In conclusion, these results may start a debate that eryptosis could have a role in the diabetic complications

    Mesenchymal stem cell transfusion: Possible beneficial effects in COVID-19 patients

    Get PDF
    SARS-CoV-2 attaches to the angiotensin-converting enzyme 2 (ACE-2) receptor on human cells. The virus causes hypercytokinemia, capillary leak, pulmonary edema, acute respiratory distress syndrome, acute cardiac injury, and leads to death. Mesenchymal stem cells (MSCs) are ACE-2 negative cells; therefore, can escape from SARSCoV-2. MSCs prevent hypercytokinemia and help the resolution of the pulmonary edema and other damages occurred during the course of COVID-19. In addition, MSCs enhance the regeneration of the lung and other tissues affected by SARS-CoV-2. The case series reported beneficial effect of MSCs in COVID-19 treatment. However, there are some concerns about the safety of MSCs, particularly referring to the increased risk of disseminated intravascular coagulation, and thromboembolism due to the expression of TF/CD142. Prospective, randomized, large scale studies are needed to reveal the optimum dose, administration way, time, efficacy, and safety of MSCs in the COVID-19 treatment

    Convalescent plasma therapy in patients with COVID-19

    Get PDF
    Introduction: Passive antibody therapy has been used to immunize vulnerable people against infectious agents. In this study, we aim to investigate the efficacy of convalescent plasma (CP) in the treatment of severe and critically ill patients diagnosed with COVID-19. Method: The data of severe or critically ill COVID-19 patients who received anti-SARS-CoV-2 antibody-containing CP along with the antiviral treatment (n = 888) and an age-gender, comorbidity, and other COVID-19 treatments matched severe or critically ill COVID-19 patients at 1:1 ratio (n = 888) were analyzed retrospectively. Results: Duration in the intensive care unit (ICU), the rate of mechanical ventilation (MV) support and vasopressor support were lower in CP group compared with the control group (p = 0.001, p = 0.02, p = 0.001, respectively). The case fatality rate (CFR) was 24.7 % in the CP group, and it was 27.7 % in the control group. Administration of CP 20 days after the COVID-19 diagnosis or COVID-19 related symptoms were associated with a higher rate of MV support compared with the first 3 interval groups (?5 days, 6-10 days, 11-15 days) (p=0.001). Conclusion: CP therapy seems to be effective for a better course of COVID-19 in severe and critically ill patients

    Patients with hematologic cancers are more vulnerable to COVID-19 compared to patients with solid cancers

    Get PDF
    Previous studies reported that COVID-19 patients with cancer had higher rates of severe events such as intensive care unit (ICU) admission, mechanical ventilation (MV) assistance, and death during the COVID-19 course compared to the general population. However, no randomized study compared the clinical course of COVID-19 in patients with hematologic cancers to patients with solid cancers. Thus, in this study, we intend to reveal the outcome of COVID-19 in hematologic cancer patients and compare their outcomes with COVID-19 patients with solid cancers. The data of 926 laboratory-confirmed COVID-19 patients, including 463 hematologic cancer patients and an age-gender paired cohort of 463 solid cancer patients, were investigated retrospectively. The frequencies of severe and critical disease, hospital and ICU admission, MV assistance were significantly higher in hematologic cancer patients compared with the solid cancer patients (p = 0.001, p = 0.045, p = 0.001, and p = 0.001, respectively). The hospital stay was longer in patients with hematologic cancers (p = 0.001); however, the median ICU stay was 6 days in both groups. The case fatality rate (CFR) was 14.9% in patients with hematologic cancers, and it was 4.8% in patients with solid cancers, and there was a statistically significant difference regarding CFR between groups (p = 0.001). Our study revealed that COVID-19 patients with hematologic cancers have a more aggressive course of COVID-19 and have higher CFR compared to COVID-19 patients with solid cancers and support the increased susceptibility of patients with hematologic cancers during the outbreak

    Outcome of COVID-19 in patients with chronic myeloid leukemia receiving tyrosine kinase inhibitors

    Get PDF
    Introduction In this study, we aim to report the outcome of COVID-19 in chronic myeloid leukemia (CML) patients receiving tyrosine kinase inhibitor (TKI). Method The data of 16 laboratory-confirmed COVID-19 patients with CML receiving TKI and age, gender, and comorbid disease matched COVID-19 patients without cancer at a 3/1 ratio (n = 48), diagnosed between March 11, 2020 and May 22, 2020 and included in the Republic of Turkey, Ministry of Health database, were analyzed retrospectively. Results The rates of intensive care unit (ICU) admission, and mechanical ventilation (MV) support were lower in CML patients compared to the control group, however, these differences did not achieve statistical significance (p = 0.1, and p = 0.2, respectively). The length of hospital stay was shorter in CML patients compared with the control group; however, it was not statistically significant (p = 0.8). The case fatality rate (CFR) in COVID-19 patients with CML was 6.3%, and it was 12.8% in the control group. Although the CFR in CML patients with COVID-19 was lower compared to the control group, this difference did not achieve statistical significance (p = 0.5). When CML patients were divided into 3 groups according to the TKI, no significant difference was observed regarding the rate of ICU admission, MV support, CFR, the length of stay in both hospital and ICU (all p > 0.05). Conclusion This study highlights that large scale prospective and randomized studies should be conducted in order to investigate the role of TKIs in the treatment of COVID-19

    The outcome of COVID-19 in patients with hematological malignancy

    Get PDF
    In this study, we aim to report the outcomes for COVID-19 in patients with hematological malignancy in Turkey. Data from laboratory-confirmed 188 897 COVID-19 patients diagnosed between 11 March 2020 and 22 June 2020 included in the Republic of Turkey, Ministry of Health database were analyzed retrospectively. All COVID-19 patients with hematological malignancy (n = 740) were included in the study and an age, sex, and comorbidity-matched cohort of COVID-19 patients without cancer (n = 740) at a 1:1 ratio was used for comparison. Non-Hodgkin lymphoma (30.1%), myelodysplastic syndrome (19.7%), myeloproliferative neoplasm (15.7%) were the most common hematological malignancies. The rates of severe and critical disease were significantly higher in patients with hematological malignancy compared with patients without cancer (P = .001). The rates of hospital and intensive care unit (ICU) admission were higher in patients with hematological malignancy compared with the patients without cancer (P = .023,P = .001, respectively). The length of hospital stay and ICU stay was similar between groups (P = .7,P = .3, retrospectively). The rate of mechanical ventilation (MV) support was higher in patients with hematological malignancy compared with the control group (P = .001). The case fatality rate was 13.8% in patients with hematological malignancy, and it was 6.8% in the control group (P = .001). This study reveals that there is an increased risk of COVID-19-related serious events (ICU admission, MV support, or death) in patients with hematological malignancy compared with COVID-19 patients without cancer and confirms the high vulnerability of patients with hematological malignancy in the current pandemic

    Convalescent plasma therapy in patients with COVID-19

    Get PDF
    There are currently no licensed vaccines or therapeutics for COVID-19. Anti-SARS CoV-2 antibody-containing plasmas, obtained from the recovered individuals who had confirmed COVID-19, have been started to be collected using apheresis devices and stored in blood banks in some countries in order to administer to the patients with COVID-19 for reducing the need of intensive care and the mortality rates. Therefore, in this review, we aim to point out some important issues related to convalescent plasma (CP) and its use in COVID-19. CP may be an adjunctive treatment option to the anti-viral therapy. The protective effect of CP may continue for weeks and months. After the assessment of the donor, 200-600 mL plasma can be collected with apheresis devices. The donation interval may vary between countries. Even though limited published studies are not prospective or randomized, until the development of vaccines or therapeutics, CP seems to be a safe and probably effective treatment for critically ill patients with COVID-19. It could also be used for prophylactic purposes but the safety and effectiveness of this approach should be tested in randomized prospective clinical trials
    corecore