4 research outputs found

    Coupling NCA Dimensionality Reduction with Machine Learning in Multispectral Rock Classification Problems

    Get PDF
    Though multitudes of industries depend on the mining industry for resources, this industry has taken hits in terms of declining mineral ore grades and its current use of traditional, time-consuming and computationally costly rock and mineral identification methods. Therefore, this paper proposes integrating Hyperspectral Imaging, Neighbourhood Component Analysis (NCA) and Machine Learning (ML) as a combined system that can identify rocks and minerals. Modestly put, hyperspectral imaging gathers electromagnetic signatures of the rocks in hundreds of spectral bands. However, this data suffers from what is termed the \u27dimensionality curse\u27, which led to our employment of NCA as a dimensionality reduction technique. NCA, in turn, highlights the most discriminant feature bands, number of which being dependent on the intended application(s) of this system. Our envisioned application is rock and mineral classification via unmanned aerial vehicle (UAV) drone technology. In this study, we performed a 204-hyperspectral to 5-band multispectral reduction, because current production drones are limited to five multispectral bands sensors. Based on these bands, we applied ML to identify and classify rocks, thereby proving our hypothesis, reducing computational costs, attaining an ML classification accuracy of 71%, and demonstrating the potential mining industry optimisations attainable through this integrated system

    Spectral Angle Mapping and AI Methods Applied in Automatic Identification of Placer Deposit Magnetite Using Multispectral Camera Mounted on UAV

    Get PDF
    The use of drones in mining environments is one way in which data pertaining to the state of a site in various industries can be remotely collected. This paper proposes a combined system that employs a 6-bands multispectral image capturing camera mounted on an Unmanned Aerial Vehicle (UAV) drone, Spectral Angle Mapping (SAM), as well as Artificial Intelligence (AI). Depth possessing multispectral data were captured at different flight elevations. This was in an attempt to find the best elevation where remote identification of magnetite iron sands via the UAV drone specialized in collecting spectral information at a minimum accuracy of +/- 16 nm was possible. Data were analyzed via SAM to deduce the cosine similarity thresholds at each elevation. Using these thresholds, AI algorithms specialized in classifying imagery data were trained and tested to find the best performing model at classifying magnetite iron sand. Considering the post flight logs, the spatial area coverage of 338 m(2), a global classification accuracy of 99.7%, as well the per-class precision of 99.4%, the 20 m flight elevation outputs presented the best performance ratios overall. Thus, the positive outputs of this study suggest viability in a variety of mining and mineral engineering practices
    corecore