527 research outputs found
Entropy, Thermostats and Chaotic Hypothesis
The chaotic hypothesis is proposed as a basis for a general theory of
nonequilibrium stationary states.
Version 2: new comments added after presenting this talk at the Meeting
mentioned in the Acknowledgement. One typo corrected.Comment: 6 page
Separating Solution of a Quadratic Recurrent Equation
In this paper we consider the recurrent equation
for with and given. We give conditions
on that guarantee the existence of such that the sequence
with tends to a finite positive limit as .Comment: 13 pages, 6 figures, submitted to J. Stat. Phy
Fluctuation theorem for stochastic dynamics
The fluctuation theorem of Gallavotti and Cohen holds for finite systems
undergoing Langevin dynamics. In such a context all non-trivial ergodic theory
issues are by-passed, and the theorem takes a particularly simple form.
As a particular case, we obtain a nonlinear fluctuation-dissipation theorem
valid for equilibrium systems perturbed by arbitrarily strong fields.Comment: 15 pages, a section rewritte
Thermodynamic formalism for field driven Lorentz gases
We analytically determine the dynamical properties of two dimensional field
driven Lorentz gases within the thermodynamic formalism. For dilute gases
subjected to an iso-kinetic thermostat, we calculate the topological pressure
as a function of a temperature-like parameter \ba up to second order in the
strength of the applied field. The Kolmogorov-Sinai entropy and the topological
entropy can be extracted from a dynamical entropy defined as a Legendre
transform of the topological pressure. Our calculations of the Kolmogorov-Sinai
entropy exactly agree with previous calculations based on a Lorentz-Boltzmann
equation approach. We give analytic results for the topological entropy and
calculate the dimension spectrum from the dynamical entropy function.Comment: 9 pages, 5 figure
In-flight dissipation as a mechanism to suppress Fermi acceleration
Some dynamical properties of time-dependent driven elliptical-shaped billiard
are studied. It was shown that for the conservative time-dependent dynamics the
model exhibits the Fermi acceleration [Phys. Rev. Lett. 100, 014103 (2008)]. On
the other hand, it was observed that damping coefficients upon collisions
suppress such phenomenon [Phys. Rev. Lett. 104, 224101 (2010)]. Here, we
consider a dissipative model under the presence of in-flight dissipation due to
a drag force which is assumed to be proportional to the square of the
particle's velocity. Our results reinforce that dissipation leads to a phase
transition from unlimited to limited energy growth. The behaviour of the
average velocity is described using scaling arguments.Comment: 4 pages, 5 figure
Motion of a random walker in a quenched power law correlated velocity field
We study the motion of a random walker in one longitudinal and d transverse
dimensions with a quenched power law correlated velocity field in the
longitudinal x-direction. The model is a modification of the Matheron-de
Marsily (MdM) model, with long-range velocity correlation. For a velocity
correlation function, dependent on transverse co-ordinates y as 1/(a+|{y_1 -
y_2}|)^alpha, we analytically calculate the two-time correlation function of
the x-coordinate. We find that the motion of the x-coordinate is a fractional
Brownian motion (fBm), with a Hurst exponent H = max [1/2, (1- alpha/4),
(1-d/4)]. From this and known properties of fBM, we calculate the disorder
averaged persistence probability of x(t) up to time t. We also find the lines
in the parameter space of d and alpha along which there is marginal behaviour.
We present results of simulations which support our analytical calculation.Comment: 8 pages, 4 figures. To appear in Physical Review
Location of the Lee-Yang zeros and absence of phase transitions in some Ising spin systems
We consider a class of Ising spin systems on a set \Lambda of sites. The
sites are grouped into units with the property that each site belongs to either
one or two units, and the total internal energy of the system is the sum of the
energies of the individual units, which in turn depend only on the number of up
spins in the unit. We show that under suitable conditions on these interactions
none of the |\Lambda| Lee-Yang zeros in the complex z = exp{2\beta h} plane,
where \beta is the inverse temperature and h the uniform magnetic field, touch
the positive real axis, at least for large values of \beta. In some cases one
obtains, in an appropriately taken \beta to infinity limit, a gas of hard
objects on a set \Lambda'; the fugacity for the limiting system is a rescaling
of z and the Lee-Yang zeros of the new partition function also avoid the
positive real axis. For certain forms of the energies of the individual units
the Lee-Yang zeros of both the finite- and zero-temperature systems lie on the
negative real axis for all \beta. One zero-temperature limit of this type, for
example, is a monomer-dimer system; our results thus generalize, to finite
\beta, a well-known result of Heilmann and Lieb that the Lee-Yang zeros of
monomer-dimer systems are real and negative.Comment: Plain TeX. Seventeen pages, five figures from .eps files. Version 2
corrects minor errors in version
Topics in chaotic dynamics
Various kinematical quantities associated with the statistical properties of
dynamical systems are examined: statistics of the motion, dynamical bases and
Lyapunov exponents. Markov partitons for chaotic systems, without any attempt
at describing ``optimal results''. The Ruelle principle is illustrated via its
relation with the theory of gases. An example of an application predicts the
results of an experiment along the lines of Evans, Cohen, Morriss' work on
viscosity fluctuations. A sequence of mathematically oriented problems
discusses the details of the main abstract ergodic theorems guiding to a proof
of Oseledec's theorem for the Lyapunov exponents and products of random
matricesComment: Plain TeX; compile twice; 30 pages; 140K Keywords: chaos,
nonequilibrium ensembles, Markov partitions, Ruelle principle, Lyapunov
exponents, random matrices, gaussian thermostats, ergodic theory, billiards,
conductivity, gas.
Statistical mechanics of damage phenomena
This paper applies the formalism of classical, Gibbs-Boltzmann statistical
mechanics to the phenomenon of non-thermal damage. As an example, a non-thermal
fiber-bundle model with the global uniform (meanfield) load sharing is
considered. Stochastic topological behavior in the system is described in terms
of an effective temperature parameter thermalizing the system. An equation of
state and a topological analog of the energy-balance equation are obtained. The
formalism of the free energy potential is developed, and the nature of the
first order phase transition and spinodal is demonstrated.Comment: Critical point appeared to be a spinodal poin
Survival of a Diffusing Particle in a Transverse Shear Flow: A First-Passage Problem with Continuously Varying Persistence Exponent
We consider a particle diffusing in the y-direction, dy/dt=\eta(t), subject
to a transverse shear flow in the x-direction, dx/dt=f(y), where x \ge 0 and
x=0 is an absorbing boundary. We treat the class of models defined by f(y) =
\pm v_{\pm}(\pm y)^\alpha where the upper (lower) sign refers to y>0 (y<0). We
show that the particle survives with probability Q(t) \sim t^{-\theta} with
\theta = 1/4, independent of \alpha, if v_{+}=v_{-}. If v_{+} \ne v_{-},
however, we show that \theta depends on both \alpha and the ratio v_{+}/v_{-},
and we determine this dependence.Comment: 4 page
- …