3 research outputs found

    Differential diagnosis of tick-borne diseases and population genetic analysis of Babesia bovis and Babesia bigemina

    Get PDF
    Abstract: Tick-borne diseases are a constraint to livestock production in many developing countries. They are responsible for high morbidity and mortality resulting in decreased production of meat, milk and other livestock by-products. The most important tick-borne diseases of livestock in sub-Saharan Africa are East coast fever (caused by Theileria parva), babesiosis (caused by Babesia bigemina and Ba. bovis), anaplasmosis (caused by Anaplasma marginale) and heartwater (caused by Ehrlichia ruminantium). Despite their economic importance, information on the epidemiology of these diseases in many countries is often lacking or inadequate, resulting in inappropriate disease control strategies being implemented. The availability of specific, sensitive and cost-effective diagnostic methods is important in the design and implementation of effective disease control strategies. In this study PCR assays based on the 18S and 16S rRNA gene sequences, that could identify Theileria / Babesia and Anaplasma / Ehrlichia pathogens of cattle respectively, were developed. In addition, PCR assays based on the β-tubulin gene that could detect T. parva, Ba. bigemina, Ba. bovis and T. taurotragi, and PCR assays based on the cytochrome b gene that could diagnose infection by Ba. bigemina and Ba. bovis were also developed. When the 18S and 16S rRNA gene PCR assays were combined into a multiplex PCR assay, Ba. bigemina and E. ruminantium DNA did not amplify and some non-specific bands were observed following agarose gel electrophoresis. The β-tubulin gene multiplex PCR assay for the diagnosis of T. parva, Ba. bovis and Ba. bigemina worked relatively well when used on laboratory-derived parasite DNA preparations. However, when it was used on field samples collected on FTA cards, multiple non-specific bands were observed after agarose gel electrophoresis of the PCR products. The 18S and 16S rRNA gene PCR assays were used for an epidemiological study of tick-borne diseases of cattle in Central and Eastern Zambia in the wet and dry seasons. All the disease pathogens under study (T. parva, T. mutans, T. taurotragi, Ba. bovis, Ba. bigemina, Anaplasma spp and E. ruminantium) were prevalent in all the regions of the country in both seasons. However, variation was observed in the prevalence of these pathogens between the regions and the seasons. A number of risk factors, associated with the occurrence of tick-borne pathogens in cattle and the tick burdens observed on cattle in the wet season were determined. A negative association was observed between the number of co-infecting pathogens and the erythrocyte packed cell volume (PCV) of carrier cattle. Using recently available genome sequences, mini- and microsatellite markers were developed for population genetic analysis of Ba. bovis and Ba. bigemina parasite populations. Ba. bovis isolates from Zambia and Turkey and Ba. bigemina isolates from Zambia were used in the population genetic analysis. High levels of genetic diversity were observed for both parasites. Population genetic analysis of the Zambian and Turkish Ba. bovis populations, using eight genetic markers showed that the two populations were sub-structured. The Zambian population comprised a single randomly mating population, while the Turkish population comprised two genetically distinct subpopulations. Population genetic analysis of the Ba. bigemina parasites from Zambia showed that this parasite population was in linkage disequilibrium. Further, analysis of the Ba. bigemina population using STRUCTURE showed that it was genetically sub-structured into five distinct subgroups. However, the resulting sample size of each subgroup was too small to definitely determine whether they were panmictic. These results provide an improved understanding of the epidemiology of bovine Babesia parasites in Turkey and Zambia

    Seroprevalence and Risk Factors of Crimean-Congo Hemorrhagic Fever in Cattle of Smallholder Farmers in Central Malawi

    No full text
    Crimean-Congo hemorrhagic fever virus (CCHFV) is endemic in Africa, Asia, and Eastern Europe where it circulates among animals and ticks causing sporadic outbreaks in humans. Although CCHF is endemic in sub-Saharan Africa, epidemiological information is lacking in many countries, including Malawi. To assess the risk of CCHF in Malawi, we conducted an epidemiological study in cattle reared by smallholder livestock farmers in central Malawi. A cross-sectional study was conducted in April 2020 involving seven districts, four from Kasungu and three from Lilongwe Agriculture Development Divisions. A structured questionnaire was administered to farmers to obtain demographic, animal management, and ecological risk factors data. Sera were collected from randomly selected cattle and screened for CCHF virus (CCHFV) specific antibodies using a commercial ELISA kit. Ticks were collected from cattle and classified morphologically to species level. An overall CCHFV seropositivity rate of 46.9% (n = 416; 95% CI: 42.0–51.8%) was observed. The seropositivity was significantly associated with the age of cattle (p < 0.001), sex (p < 0.001), presence of ticks in herds (p = 0.01), district (p = 0.025), and type of grazing lands (p = 0.013). Five species of ticks were identified, including Hyalomma truncatum, a known vector of CCHFV. Ticks of the species Hyalomma truncatum were not detected in two districts with the highest seroprevalence for CCHF and vector competency must be further explored in the study area. To our knowledge, this is the first report of serologic evidence of the presence of CCHV among smallholder cattle in central Malawi. This study emphasizes the need for continued monitoring of CCHFV infection among livestock, ticks, and humans for the development of data-based risk mitigation strategies

    Ecological Niche Modeling of <i>Aedes</i> and <i>Culex</i> Mosquitoes: A Risk Map for Chikungunya and West Nile Viruses in Zambia

    No full text
    The circulation of both West Nile Virus (WNV) and Chikungunya Virus (CHIKV) in humans and animals, coupled with a favorable tropical climate for mosquito proliferation in Zambia, call for the need for a better understanding of the ecological and epidemiological factors that govern their transmission dynamics in this region. This study aimed to examine the contribution of climatic variables to the distribution of Culex and Aedes mosquito species, which are potential vectors of CHIKV, WNV, and other arboviruses of public-health concern. Mosquitoes collected from Lusaka as well as from the Central and Southern provinces of Zambia were sorted by species within the Culex and Aedes genera, both of which have the potential to transmit viruses. The MaxEnt software was utilized to predict areas at risk of WNV and CHIKV based on the occurrence data on mosquitoes and environmental covariates. The model predictions show three distinct spatial hotspots, ranging from the high-probability regions to the medium- and low-probability regions. Regions along Lake Kariba, the Kafue River, and the Luangwa Rivers, as well as along the Mumbwa, Chibombo, Kapiri Mposhi, and Mpika districts were predicted to be suitable habitats for both species. The rainfall and temperature extremes were the most contributing variables in the predictive models
    corecore