40 research outputs found

    Imaging the phase of an evolving Bose-Einstein condensate wavefunction

    Get PDF
    We demonstrate a spatially resolved autocorrelation measurement with a Bose-Einstein condensate (BEC) and measure the evolution of the spatial profile of its quantum mechanical phase. Upon release of the BEC from the magnetic trap, its phase develops a form that we measure to be quadratic in the spatial coordinate. Our experiments also reveal the effects of the repulsive interaction between two overlapping BEC wavepackets and we measure the small momentum they impart to each other

    Spectrum of light scattering from an extended atomic wave packet

    Full text link
    The spectrum of the light scattered from an extended atomic wave packet is calculated. For a wave packet consisting of two spatially separated peaks moving on parallel trajectories, the spectrum contains Ramsey-like fringes that are sensitive to the phase difference between the two components of the wave packet. Using this technique, one can establish the mutual coherence of the two components of the wave packet without recombining them.Comment: 4 page

    Calculations of parity nonconserving s-d transitions in Cs, Fr, Ba II, and Ra II

    Get PDF
    We have performed ab initio mixed-states and sum-over-states calculations of parity nonconserving (PNC) electric dipole (E1) transition amplitudes between s-d electron states of Cs, Fr, Ba II, and Ra II. For the lower states of these atoms we have also calculated energies, E1 transition amplitudes, and lifetimes. We have shown that PNC E1 transition amplitudes between s-d states can be calculated to high accuracy. Contrary to the Cs 6s-7s transition, in these transitions there are no strong cancelations between different terms in the sum-over-states approach. In fact, there is one dominating term which deviates from the sum by less than 20%. This term corresponds to an s-p_{1/2} weak matrix element, which can be calculated to better than 1%, and a p_{1/2}-d_{3/2} E1 transition amplitude, which can be measured. Also, the s-d amplitudes are about four times larger than the corresponding s-s transitions. We have shown that by using a hybrid mixed-states/sum-over-states approach the accuracy of the calculations of PNC s-d amplitudes could compete with that of Cs 6s-7s if p_{1/2}-d_{3/2} E1 amplitudes are measured to high accuracy.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    Direct observation of the phonon energy in a Bose-Einstein condensate by tomographic imaging

    Full text link
    The momentum and energy of phonons in a Bose-Einstein condensate are measured directly from a time-of-flight image by computerized tomography. We find that the same atoms that carry the momentum of the excitation also carry the excitation energy. The measured energy is in agreement with the Bogoliubov spectrum. Hydrodynamic simulations are performed which confirm our observation.Comment: Letter, 5 figure

    Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1-D optical lattices

    Full text link
    We have loaded Bose-Einstein condensates into one-dimensional, off-resonant optical lattices and accelerated them by chirping the frequency difference between the two lattice beams. For small values of the lattice well-depth, Bloch oscillations were observed. Reducing the potential depth further, Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown of the oscillations, was also studied and used as a probe for the effective potential resulting from mean-field interactions as predicted by Choi and Niu [Phys. Rev. Lett. {\bf 82}, 2022 (1999)]. The effective potential was measured for various condensate densities and trap geometries, yielding good qualitative agreement with theoretical calculations.Comment: 5 pages, 3 figures; accepted for publication in Physical Review Letter

    A single hollow beam optical trap for cold atoms

    Get PDF
    We present an optical trap for atoms that we have developed for precision spectroscopy measurements. Cold atoms are captured in a dark region of space inside a blue-detuned hollow laser beam formed by an axicon. We analyze the light potential in a ray optics picture and experimentally demonstrate trapping of laser-cooled metastable xenon atoms.Comment: 12 pages, 8 figure

    A quantum beam splitter for atoms

    Full text link
    An interferometric method is proposed to controllably split an atomic condensate in two spatial components with strongly reduced population fluctuations. All steps in our proposal are in current use in cold atom laboratories, and we show with a theoretical calculation that our proposal is very robust against imperfections of the interferometer.Comment: 6 pages, 3 figures, revtex

    Photoassociation of sodium in a Bose-Einstein condensate

    Full text link
    We report on the formation of ultra-cold Na2_2 molecules using single-photon photoassociation of a Bose-Einstein condensate. The photoassociation rate, linewidth and light shift of the J=1, v=135v=135 vibrational level of the \mterm{A}{1}{+}{u} molecular bound state have been measured. We find that the photoassociation rate constant increases linearly with intensity, even where it is predicted that many-body effects might limit the rate. Our observations are everywhere in good agreement with a two-body theory having no free parameters.Comment: Fixes to the figures and references. Just the normal human stupidity type stuff, nothing Earth-shatterin

    Momentum state engineering and control in Bose-Einstein condensates

    Full text link
    We demonstrate theoretically the use of genetic learning algorithms to coherently control the dynamics of a Bose-Einstein condensate. We consider specifically the situation of a condensate in an optical lattice formed by two counterpropagating laser beams. The frequency detuning between the lasers acts as a control parameter that can be used to precisely manipulate the condensate even in the presence of a significant mean-field energy. We illustrate this procedure in the coherent acceleration of a condensate and in the preparation of a superposition of prescribed relative phase.Comment: 9 pages incl. 6 PostScript figures (.eps), LaTeX using RevTeX, submitted to Phys. Rev. A, incl. small modifications, some references adde

    Experimental properties of Bose-Einstein condensates in 1D optical lattices: Bloch oscillations, Landau-Zener tunneling and mean-field effects

    Full text link
    We report experimental results on the properties of Bose-Einstein condensates in 1D optical lattices. By accelerating the lattice, we observed Bloch oscillations of the condensate in the lowest band, as well as Landau-Zener (L-Z) tunneling into higher bands when the lattice depth was reduced and/or the acceleration of the lattice was increased. The dependence of the L-Z tunneling rate on the condensate density was then related to mean-field effects modifying the effective potential acting on the condensate, yielding good agreement with recent theoretical work. We also present several methods for measuring the lattice depth and discuss the effects of the micromotion in the TOP-trap on our experimental results.Comment: 11 pages, 14 figure
    corecore