40 research outputs found
Imaging the phase of an evolving Bose-Einstein condensate wavefunction
We demonstrate a spatially resolved autocorrelation measurement with a
Bose-Einstein condensate (BEC) and measure the evolution of the spatial profile
of its quantum mechanical phase. Upon release of the BEC from the magnetic
trap, its phase develops a form that we measure to be quadratic in the spatial
coordinate. Our experiments also reveal the effects of the repulsive
interaction between two overlapping BEC wavepackets and we measure the small
momentum they impart to each other
Spectrum of light scattering from an extended atomic wave packet
The spectrum of the light scattered from an extended atomic wave packet is
calculated. For a wave packet consisting of two spatially separated peaks
moving on parallel trajectories, the spectrum contains Ramsey-like fringes that
are sensitive to the phase difference between the two components of the wave
packet. Using this technique, one can establish the mutual coherence of the two
components of the wave packet without recombining them.Comment: 4 page
Calculations of parity nonconserving s-d transitions in Cs, Fr, Ba II, and Ra II
We have performed ab initio mixed-states and sum-over-states calculations of
parity nonconserving (PNC) electric dipole (E1) transition amplitudes between
s-d electron states of Cs, Fr, Ba II, and Ra II. For the lower states of these
atoms we have also calculated energies, E1 transition amplitudes, and
lifetimes. We have shown that PNC E1 transition amplitudes between s-d states
can be calculated to high accuracy. Contrary to the Cs 6s-7s transition, in
these transitions there are no strong cancelations between different terms in
the sum-over-states approach. In fact, there is one dominating term which
deviates from the sum by less than 20%. This term corresponds to an s-p_{1/2}
weak matrix element, which can be calculated to better than 1%, and a
p_{1/2}-d_{3/2} E1 transition amplitude, which can be measured. Also, the s-d
amplitudes are about four times larger than the corresponding s-s transitions.
We have shown that by using a hybrid mixed-states/sum-over-states approach the
accuracy of the calculations of PNC s-d amplitudes could compete with that of
Cs 6s-7s if p_{1/2}-d_{3/2} E1 amplitudes are measured to high accuracy.Comment: 15 pages, 8 figures, submitted to Phys. Rev.
Direct observation of the phonon energy in a Bose-Einstein condensate by tomographic imaging
The momentum and energy of phonons in a Bose-Einstein condensate are measured
directly from a time-of-flight image by computerized tomography. We find that
the same atoms that carry the momentum of the excitation also carry the
excitation energy. The measured energy is in agreement with the Bogoliubov
spectrum. Hydrodynamic simulations are performed which confirm our observation.Comment: Letter, 5 figure
Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1-D optical lattices
We have loaded Bose-Einstein condensates into one-dimensional, off-resonant
optical lattices and accelerated them by chirping the frequency difference
between the two lattice beams. For small values of the lattice well-depth,
Bloch oscillations were observed. Reducing the potential depth further,
Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown
of the oscillations, was also studied and used as a probe for the effective
potential resulting from mean-field interactions as predicted by Choi and Niu
[Phys. Rev. Lett. {\bf 82}, 2022 (1999)]. The effective potential was measured
for various condensate densities and trap geometries, yielding good qualitative
agreement with theoretical calculations.Comment: 5 pages, 3 figures; accepted for publication in Physical Review
Letter
A single hollow beam optical trap for cold atoms
We present an optical trap for atoms that we have developed for precision
spectroscopy measurements. Cold atoms are captured in a dark region of space
inside a blue-detuned hollow laser beam formed by an axicon. We analyze the
light potential in a ray optics picture and experimentally demonstrate trapping
of laser-cooled metastable xenon atoms.Comment: 12 pages, 8 figure
A quantum beam splitter for atoms
An interferometric method is proposed to controllably split an atomic
condensate in two spatial components with strongly reduced population
fluctuations. All steps in our proposal are in current use in cold atom
laboratories, and we show with a theoretical calculation that our proposal is
very robust against imperfections of the interferometer.Comment: 6 pages, 3 figures, revtex
Photoassociation of sodium in a Bose-Einstein condensate
We report on the formation of ultra-cold Na molecules using single-photon
photoassociation of a Bose-Einstein condensate. The photoassociation rate,
linewidth and light shift of the J=1, vibrational level of the
\mterm{A}{1}{+}{u} molecular bound state have been measured. We find that the
photoassociation rate constant increases linearly with intensity, even where it
is predicted that many-body effects might limit the rate. Our observations are
everywhere in good agreement with a two-body theory having no free parameters.Comment: Fixes to the figures and references. Just the normal human stupidity
type stuff, nothing Earth-shatterin
Momentum state engineering and control in Bose-Einstein condensates
We demonstrate theoretically the use of genetic learning algorithms to
coherently control the dynamics of a Bose-Einstein condensate. We consider
specifically the situation of a condensate in an optical lattice formed by two
counterpropagating laser beams. The frequency detuning between the lasers acts
as a control parameter that can be used to precisely manipulate the condensate
even in the presence of a significant mean-field energy. We illustrate this
procedure in the coherent acceleration of a condensate and in the preparation
of a superposition of prescribed relative phase.Comment: 9 pages incl. 6 PostScript figures (.eps), LaTeX using RevTeX,
submitted to Phys. Rev. A, incl. small modifications, some references adde
Experimental properties of Bose-Einstein condensates in 1D optical lattices: Bloch oscillations, Landau-Zener tunneling and mean-field effects
We report experimental results on the properties of Bose-Einstein condensates
in 1D optical lattices. By accelerating the lattice, we observed Bloch
oscillations of the condensate in the lowest band, as well as Landau-Zener
(L-Z) tunneling into higher bands when the lattice depth was reduced and/or the
acceleration of the lattice was increased. The dependence of the L-Z tunneling
rate on the condensate density was then related to mean-field effects modifying
the effective potential acting on the condensate, yielding good agreement with
recent theoretical work. We also present several methods for measuring the
lattice depth and discuss the effects of the micromotion in the TOP-trap on our
experimental results.Comment: 11 pages, 14 figure