1,581 research outputs found
Targeted Assembly of Short Sequence Reads
As next-generation sequence (NGS) production continues to increase, analysis is becoming a significant bottleneck. However, in situations where information is required only for specific sequence variants, it is not necessary to assemble or align whole genome data sets in their entirety. Rather, NGS data sets can be mined for the presence of sequence variants of interest by localized assembly, which is a faster, easier, and more accurate approach. We present TASR, a streamlined assembler that interrogates very large NGS data sets for the presence of specific variants, by only considering reads within the sequence space of input target sequences provided by the user. The NGS data set is searched for reads with an exact match to all possible short words within the target sequence, and these reads are then assembled strin-gently to generate a consensus of the target and flanking sequence. Typically, variants of a particular locus are provided as different target sequences, and the presence of the variant in the data set being interrogated is revealed by a successful assembly outcome. However, TASR can also be used to find unknown sequences that flank a given target. We demonstrate that TASR has utility in finding or confirming ge-nomic mutations, polymorphism, fusion and integration events. Targeted assembly is a powerful method for interrogating large data sets for the presence of sequence variants of interest. TASR is a fast, flexible and easy to use tool for targeted assembly
Eliciting and prioritising determinants of improved care in multimorbidity: A modified online Delphi study.
BACKGROUND: Multimorbidity is a major challenge to health and social care systems around the world. There is limited research exploring the wider contextual determinants that are important to improving care for this cohort. In this study, we aimed to elicit and prioritise determinants of improved care in people with multiple conditions. METHODS: A three-round online Delphi study was conducted in England with health and social care professionals, data scientists, researchers, people living with multimorbidity and their carers. RESULTS: Our findings suggest a care system which is still predominantly single condition focused. 'Person-centred and holistic care' and 'coordinated and joined up care', were highly rated determinants in relation to improved care for multimorbidity. We further identified a range of non-medical determinants that are important to providing holistic care for this cohort. CONCLUSIONS: Further progress towards a holistic and patient-centred model is needed to ensure that care more effectively addresses the complex range of medical and non-medical needs of people living with multimorbidity. This requires a move from a single condition focused biomedical model to a person-based biopsychosocial approach, which has yet to be achieved
Effects of the physiological parameters on the signal-to-noise ratio of single myoelectric channel
<p>Abstract</p> <p>Background</p> <p>An important measure of the performance of a myoelectric (ME) control system for powered artificial limbs is the signal-to-noise ratio (SNR) at the output of ME channel. However, few studies illustrated the neuron-muscular interactive effects on the SNR at ME control channel output. In order to obtain a comprehensive understanding on the relationship between the physiology of individual motor unit and the ME control performance, this study investigates the effects of physiological factors on the SNR of single ME channel by an analytical and simulation approach, where the SNR is defined as the ratio of the mean squared value estimation at the channel output and the variance of the estimation.</p> <p>Methods</p> <p>Mathematical models are formulated based on three fundamental elements: a motoneuron firing mechanism, motor unit action potential (MUAP) module, and signal processor. Myoelectric signals of a motor unit are synthesized with different physiological parameters, and the corresponding SNR of single ME channel is numerically calculated. Effects of physiological multi factors on the SNR are investigated, including properties of the motoneuron, MUAP waveform, recruitment order, and firing pattern, etc.</p> <p>Results</p> <p>The results of the mathematical model, supported by simulation, indicate that the SNR of a single ME channel is associated with the voluntary contraction level. We showed that a model-based approach can provide insight into the key factors and bioprocess in ME control. The results of this modelling work can be potentially used in the improvement of ME control performance and for the training of amputees with powered prostheses.</p> <p>Conclusion</p> <p>The SNR of single ME channel is a force, neuronal and muscular property dependent parameter. The theoretical model provides possible guidance to enhance the SNR of ME channel by controlling physiological variables or conscious contraction level.</p
Investigating local policy drivers for alcohol harm prevention: a comparative case study of two local authorities in England
Background: The considerable challenges associated with implementing national level alcohol policies have
encouraged a renewed focus on the prospects for local-level policies in the UK and elsewhere. We adopted a
case study approach to identify the major characteristics and drivers of differences in the patterns of local
alcohol policies and services in two contrasting local authority (LA) areas in England.
Methods: Data were collected via thirteen semi-structured interviews with key informants (including public
health, licensing and trading standards) and documentary analysis, including harm reduction strategies and
statements of licensing policy. A two-stage thematic analysis was used to categorize all relevant statements
into seven over-arching themes, by which document sources were then also analysed.
Results: Three of the seven over-arching themes (drink environment, treatment services and barriers and
facilitators), provided for the most explanatory detail informing the contrasting policy responses of the two
LAs: LA1 pursued a risk-informed strategy via a specialist police team working proactively with problem
premises and screening systematically to identify riskier drinking. LA2 adopted a more upstream regulatory
approach around restrictions on availability with less emphasis on co-ordinated screening and treatment
measures.
Conclusion: New powers over alcohol policy for LAs in England can produce markedly different policies for
reducing alcohol-related harm. These difference are rooted in economic, opportunistic, organisational and
personnel factors particular to the LAs themselves and may lead to closely tailored solutions in some policy
areas and poorer co-ordination and attention in others
Pica and refractory iron deficiency anaemia: a case report
INTRODUCTION: Iron deficiency is the most common cause of anaemia worldwide. Pica, the ingestion of substances that are inappropriate for consumption, is associated with iron deficiency and may be under-diagnosed. CASE PRESENTATION: A 34-year-old woman presented with iron deficiency anaemia refractory to treatment for more than a decade. The clinical presentation, endoscopic findings and laboratory investigations were consistent with pica. Subsequent geophysical analysis confirmed that the ingested material was kaolin, a negatively charged silicate. CONCLUSION: Prolonged unexplained iron deficiency anaemia should prompt clinicians to remember and inquire about pica. In our patient, this would have averted numerous unnecessary investigations and prevented a decade-long suffering
Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record
Medvedev and Melott (2007) have suggested that periodicity in fossil
biodiversity may be induced by cosmic rays which vary as the Solar System
oscillates normal to the galactic disk. We re-examine the evidence for a 62
million year (Myr) periodicity in biodiversity throughout the Phanerozoic
history of animal life reported by Rohde & Mueller (2005), as well as related
questions of periodicity in origination and extinction. We find that the signal
is robust against variations in methods of analysis, and is based on
fluctuations in the Paleozoic and a substantial part of the Mesozoic.
Examination of origination and extinction is somewhat ambiguous, with results
depending upon procedure. Origination and extinction intensity as defined by RM
may be affected by an artifact at 27 Myr in the duration of stratigraphic
intervals. Nevertheless, when a procedure free of this artifact is implemented,
the 27 Myr periodicity appears in origination, suggesting that the artifact may
ultimately be based on a signal in the data. A 62 Myr feature appears in
extinction, when this same procedure is used. We conclude that evidence for a
periodicity at 62 Myr is robust, and evidence for periodicity at approximately
27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio
Increased insolation threshold for runaway greenhouse processes on Earth like planets
Because the solar luminosity increases over geological timescales, Earth
climate is expected to warm, increasing water evaporation which, in turn,
enhances the atmospheric greenhouse effect. Above a certain critical
insolation, this destabilizing greenhouse feedback can "runaway" until all the
oceans are evaporated. Through increases in stratospheric humidity, warming may
also cause oceans to escape to space before the runaway greenhouse occurs. The
critical insolation thresholds for these processes, however, remain uncertain
because they have so far been evaluated with unidimensional models that cannot
account for the dynamical and cloud feedback effects that are key stabilizing
features of Earth's climate. Here we use a 3D global climate model to show that
the threshold for the runaway greenhouse is about 375 W/m, significantly
higher than previously thought. Our model is specifically developed to quantify
the climate response of Earth-like planets to increased insolation in hot and
extremely moist atmospheres. In contrast with previous studies, we find that
clouds have a destabilizing feedback on the long term warming. However,
subsident, unsaturated regions created by the Hadley circulation have a
stabilizing effect that is strong enough to defer the runaway greenhouse limit
to higher insolation than inferred from 1D models. Furthermore, because of
wavelength-dependent radiative effects, the stratosphere remains cold and dry
enough to hamper atmospheric water escape, even at large fluxes. This has
strong implications for Venus early water history and extends the size of the
habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013.
Accepted version before journal editing and with Supplementary Informatio
Penetrating spinal injury with wooden fragments causing cauda equina syndrome: case report and literature review
Study design: Case report Objective: To report an unusual case of cauda equina syndrome following penetrating injury to the lumbar spine by wooden fragments and to stress the importance of early magnetic resonance imaging (MRI) in similar cases. Summary of background data: A 22-year-old girl accidentally landed on wooden bannister and sustained a laceration to her back. She complained of back pain but had fully intact neurological function. The laceration in her back was explored and four large wooden pieces were removed. However 72Â h later, she developed cauda equina syndrome. MRI demonstrated the presence of a foreign body between second and third lumbar spinal levels following which she underwent emergency decompressive laminectomy and the removal of the multiple wooden fragments that had penetrated the dura. Results: Post-operatively motor function in her lower limbs returned to normal but she continued to require a catheter for incontinence. At review 6Â months later, she was mobilising independently but the incontinence remained unchanged. Conclusion: There are no reported cases in the literature of wooden fragments penetrating the dura from the back with or without the progression to cauda equina syndrome. The need for a high degree of suspicion and an early MRI scan to localise any embedded wooden fragments that may be separate from the site of laceration is emphasized even if initial neurology is intact
Robust estimation of microbial diversity in theory and in practice
Quantifying diversity is of central importance for the study of structure,
function and evolution of microbial communities. The estimation of microbial
diversity has received renewed attention with the advent of large-scale
metagenomic studies. Here, we consider what the diversity observed in a sample
tells us about the diversity of the community being sampled. First, we argue
that one cannot reliably estimate the absolute and relative number of microbial
species present in a community without making unsupported assumptions about
species abundance distributions. The reason for this is that sample data do not
contain information about the number of rare species in the tail of species
abundance distributions. We illustrate the difficulty in comparing species
richness estimates by applying Chao's estimator of species richness to a set of
in silico communities: they are ranked incorrectly in the presence of large
numbers of rare species. Next, we extend our analysis to a general family of
diversity metrics ("Hill diversities"), and construct lower and upper estimates
of diversity values consistent with the sample data. The theory generalizes
Chao's estimator, which we retrieve as the lower estimate of species richness.
We show that Shannon and Simpson diversity can be robustly estimated for the in
silico communities. We analyze nine metagenomic data sets from a wide range of
environments, and show that our findings are relevant for empirically-sampled
communities. Hence, we recommend the use of Shannon and Simpson diversity
rather than species richness in efforts to quantify and compare microbial
diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures.
Supplement: 16 pages, 4 figure
Assessment of Minimal Residual Disease in Standard-Risk AML
BACKGROUND: Despite the molecular heterogeneity of standard-risk acute myeloid leukemia (AML), treatment decisions are based on a limited number of molecular genetic markers and morphology-based assessment of remission. Sensitive detection of a leukemia-specific marker (e.g., a mutation in the gene encoding nucleophosmin [NPM1]) could improve prognostication by identifying submicroscopic disease during remission. METHODS: We used a reverse-transcriptase quantitative polymerase-chain-reaction assay to detect minimal residual disease in 2569 samples obtained from 346 patients with NPM1-mutated AML who had undergone intensive treatment in the National Cancer Research Institute AML17 trial. We used a custom 51-gene panel to perform targeted sequencing of 223 samples obtained at the time of diagnosis and 49 samples obtained at the time of relapse. Mutations associated with preleukemic clones were tracked by means of digital polymerase chain reaction. RESULTS: Molecular profiling highlighted the complexity of NPM1-mutated AML, with segregation of patients into more than 150 subgroups, thus precluding reliable outcome prediction. The determination of minimal-residual-disease status was more informative. Persistence of NPM1-mutated transcripts in blood was present in 15% of the patients after the second chemotherapy cycle and was associated with a greater risk of relapse after 3 years of follow-up than was an absence of such transcripts (82% vs. 30%; hazard ratio, 4.80; 95% confidence interval [CI], 2.95 to 7.80; P<0.001) and a lower rate of survival (24% vs. 75%; hazard ratio for death, 4.38; 95% CI, 2.57 to 7.47; P<0.001). The presence of minimal residual disease was the only independent prognostic factor for death in multivariate analysis (hazard ratio, 4.84; 95% CI, 2.57 to 9.15; P<0.001). These results were validated in an independent cohort. On sequential monitoring of minimal residual disease, relapse was reliably predicted by a rising level of NPM1-mutated transcripts. Although mutations associated with preleukemic clones remained detectable during ongoing remission after chemotherapy, NPM1 mutations were detected in 69 of 70 patients at the time of relapse and provided a better marker of disease status. CONCLUSIONS: The presence of minimal residual disease, as determined by quantitation of NPM1-mutated transcripts, provided powerful prognostic information independent of other risk factors. (Funded by Bloodwise and the National Institute for Health Research; Current Controlled Trials number, ISRCTN55675535.)
- âŠ