107 research outputs found
Feeding of soy protein isolate to rats during pregnancy and lactation suppresses formation of aberrant crypt foci in their progeny's colons: interaction of diet with fetal alcohol exposure
Soy protein isolate (SPI) in the diet may inhibit colon tumorigenesis. We examined azoxymethane (AOM)-induced aberrant crypt foci (ACF) in male rats in relation to lifetime, pre-weaning, or post-weaning dietary exposure to SPI and also within the context of fetal alcohol exposure. Pregnant Sprague Dawley rats were fed AIN-93G diets containing casein (20%, the control diet) or SPI (20%) as the sole protein source starting on gestation day 4 (GD 4). Progeny were weaned on postnatal day (PND) 21 to the same diet as their dams and were fed this diet until termination of the experiment at PND 138. Rats received AOM on PND 89 and 96. Lifetime (GD 4 to PND 138) feeding of SPI led to reduced frequency of ACF with 4 or more crypts in the distal colon. Progeny of dams fed SPI only during pregnancy and lactation or progeny fed SPI only after weaning exhibited similarly reduced frequency of large ACF in distal colon. Number of epithelial cells, in the distal colon, undergoing apoptosis was unaffected by diet. SPI reduced weight gain and adiposity, but these were not correlated with fewer numbers of large ACF. Lifetime SPI exposure similarly inhibited development of large ACF in Sprague Dawley rats whose dams were exposed to ethanol during pregnancy. In summary, feeding of SPI to rat dams during pregnancy and lactation suppresses numbers of large ACF in their progeny, implying a long-term or permanent change elicited by the maternal diet. Moreover, results support the use of ACF as an intermediate endpoint for elucidating effects of SPI and its biochemical constituents in colon cancer prevention in rats
Pilot Study Protocol of a Mhealth SelfâManagement Intervention for Family Members of Pediatric Transplant Recipients
Solidâorgan transplantation is the treatment of choice for endâstage organ failure. Parents of pediatric transplant recipients who reported a lack of readiness for discharge had more difficulty coping and managing their child\u27s medically complex care at home. In this paper, we describe the protocol for the pilot study of a mHealth intervention (myFAMI). The myFAMI intervention is based on the Individual and Family SelfâManagement Theory and focuses on family selfâmanagement of pediatric transplant recipients at home. The purpose of the pilot study is to test the feasibility of the myFAMI intervention with family members of pediatric transplant recipients and to test the preliminary efficacy on postdischarge coping through a randomized controlled trial. The sample will include 40 family units, 20 in each arm of the study, from three pediatric transplant centers in the United States. Results from this study may advance nursing science by providing insight for the use of mHealth to facilitate patient/familyânurse communication and family selfâmanagement behaviors for family members of pediatric transplant recipients
Impact of \u3cem\u3eMYH6\u3c/em\u3e Variants in Hypoplastic Left Heart Syndrome
Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease (CHD). Although prior studies suggest that HLHS has a complex genetic inheritance, its etiology remains largely unknown. The goal of this study was to characterize a risk gene in HLHS and its effect on HLHS etiology and outcome. We performed next-generation sequencing on a multigenerational family with a high prevalence of CHD/HLHS, identifying a rare variant in the α-myosin heavy chain (MYH6) gene. A case-control study of 190 unrelated HLHS subjects was then performed and compared with the 1000 Genomes Project. Damaging MYH6 variants, including novel, missense, in-frame deletion, premature stop, de novo, and compound heterozygous variants, were significantly enriched in HLHS cases (P \u3c 1 Ă 10â5). Clinical outcomes analysis showed reduced transplant-free survival in HLHS subjects with damaging MYH6 variants (P \u3c 1 Ă 10â2). Transcriptome and protein expression analyses with cardiac tissue revealed differential expression of cardiac contractility genes, notably upregulation of the ÎČ-myosin heavy chain (MYH7) gene in subjects with MYH6 variants (P \u3c 1 Ă 10â3). We subsequently used patient-specific induced pluripotent stem cells (iPSCs) to model HLHS in vitro. Early stages of in vitro cardiomyogenesis in iPSCs derived from two unrelated HLHS families mimicked the increased expression of MYH7 observed in vivo (P \u3c 1 Ă 10â2), while revealing defective cardiomyogenic differentiation. Rare, damaging variants in MYH6 are enriched in HLHS, affect molecular expression of contractility genes, and are predictive of poor outcome. These findings indicate that the etiology of MYH6-associated HLHS can be informed using iPSCs and suggest utility in future clinical applications
Cardiovascular Magnetic Resonance Imaging-Based Computational Fluid Dynamics/Fluid-Structure Interaction Pilot Study to Detect Early Vascular Changes in Pediatric Patients with Type 1 Diabetes
We hypothesized that pediatric patients with type 1 diabetes have cardiac magnetic resonance (CMR) detectable differences in thoracic aortic wall properties and hemodynamics leading to significant local differences in indices of wall shear stress, when compared with age-matched control subjects without diabetes. Pediatric patients with type 1 diabetes were recruited from Childrenâs Hospital of Wisconsin and compared with controls. All underwent morning CMR scanning, 4-limb blood pressure, brachial artery reactivity testing, and venipuncture. Patient-specific computational fluid dynamics modeling with fluidâstructure interaction, based on CMR data, determined regional time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI). Twenty type 1 diabetic subjects, median age 15.8 years (11.6â18.4) and 8 controls 15.4 years (10.3â18.2) were similar except for higher glucose, hemoglobin A1c, and triglycerides for type 1 diabetic subjects. Lower flow-mediated dilation was seen for those with type 1 diabetes (6.5) versus controls (7.8), p = 0.036. For type 1 diabetic subjects, the aorta had more regions with high TAWSS when compared to controls. OSI maps appeared similar. Flow-mediated dilation positively correlated with age at diabetes diagnosis (r = 0.468, p = 0.038) and hemoglobin A1c (r = 0.472, p = 0.036), but did not correlate with aortic distensibility, TAWSS, or OSI. TAWSS did not correlate with any clinical parameter for either group. CMR shows regional differences in aortic wall properties for young diabetic patients. Some local differences in wall shear stress indices were also observed, but a longitudinal study is now warranted
Role of Chromatin Structural Changes in Regulating Human CYP3A Ontogeny
Non-standard abbreviations: bp(s), base pair(s); C/EBP, CCAAT/enhancer binding protein; ChIP, chromatin immunoprecipitation; CLEM4, constitutive liver enhancer module 4; Cq, quantification cycle; DME, drug metabolizing enzyme; HNF4α, hepatocyte nuclear factor 4 alpha; PXR, pregnane X receptor; qPCR, quantitative polymerase chain reaction; TBP, TATAbox binding protein; TFIID, transcription factor II D; TSS, transcription start site; USF1, upstream stimulatory factor 1; XREM, xenobiotic-response enhancer module DMD #69344 3 Abstract Variability in drug metabolizing enzyme developmental trajectories contributes to interindividual differences in susceptibility to chemical toxicity and adverse drug reactions, particularly in the first years of life. Factors linked to these interindividual differences are largely unknown, but molecular mechanisms regulating ontogeny are likely involved. To evaluate chromatin structure dynamics as a likely contributing mechanism, age-dependent changes in modified and variant histone occupancy were evaluated within known CYP3A4 and 3A7 regulatory domains. Chromatin immunoprecipitation using fetal or postnatal human hepatocyte chromatin pools followed by quantitative polymerase chain reaction DNA amplification was used to determine relative chromatin occupancy by modified and variant histones. Chromatin structure representing a poised transcriptional state (bivalent chromatin), indicated by the occupancy by modified histones associated with both active and repressed transcription, was observed for CYP3A4 and most 3A7 regulatory regions in both postnatal and fetal livers. However, the CYP3A4 regulatory regions had significantly greater occupancy by modified histones associated with repressed transcription in the fetal liver. Conversely, some modified histones associated with active transcription exhibited greater occupancy in the postnatal liver. CYP3A7 regulatory regions also had significantly greater occupancy by modified histones associated with repressed transcription in the fetus. The occupancy by modified histones observed is consistent with chromatin structural dynamics contributing to CYP3A4 ontogeny, although the data is less conclusive regarding CYP3A7. Interpretation of the latter data may be confounded by cell-type heterogeneity in the fetal liver. DMD #69344
Creating a Data Dictionary for Pediatric Autonomic Disorders
PURPOSE: Whether evaluating patients clinically, documenting care in the electronic health record, performing research, or communicating with administrative agencies, the use of a common set of terms and definitions is vital to ensure appropriate use of language. At a 2017 meeting of the Pediatric Section of the American Autonomic Society, it was determined that an autonomic data dictionary comprising aspects of evaluation and management of pediatric patients with autonomic disorders would be an important resource for multiple stakeholders.
METHODS: Our group created the list of terms for the dictionary. Definitions were prioritized to be obtained from established sources with which to harmonize. Some definitions needed mild modification from original sources. The next tier of sources included published consensus statements, followed by Internet sources. In the absence of appropriate sources, we created a definition.
RESULTS: A total of 589 terms were listed and defined in the dictionary. Terms were organized by Signs/Symptoms, Triggers, Co-morbid Disorders, Family History, Medications, Medical Devices, Physical Examination Findings, Testing, and Diagnoses.
CONCLUSION: Creation of this data dictionary becomes the foundation of future clinical care and investigative research in pediatric autonomic disorders, and can be used as a building block for a subsequent adult autonomic data dictionary
Special Section on Pediatric Drug Disposition and Pharmacokinetics Role of Chromatin Structural Changes in Regulating Human CYP3A Ontogeny s
ABSTRACT Variability in drug-metabolizing enzyme developmental trajectories contributes to interindividual differences in susceptibility to chemical toxicity and adverse drug reactions, particularly in the first years of life. Factors linked to these interindividual differences are largely unknown, but molecular mechanisms regulating ontogeny are likely involved. To evaluate chromatin structure dynamics as a likely contributing mechanism, age-dependent changes in modified and variant histone occupancy were evaluated within known CYP3A4 and 3A7 regulatory domains. Chromatin immunoprecipitation using fetal or postnatal human hepatocyte chromatin pools followed by quantitative polymerase chain reaction DNA amplification was used to determine relative chromatin occupancy by modified and variant histones. Chromatin structure representing a poised transcriptional state (bivalent chromatin), indicated by the occupancy by modified histones associated with both active and repressed transcription, was observed for CYP3A4 and most 3A7 regulatory regions in both postnatal and fetal livers. However, the CYP3A4 regulatory regions had significantly greater occupancy by modified histones associated with repressed transcription in the fetal liver. Conversely, some modified histones associated with active transcription exhibited greater occupancy in the postnatal liver. CYP3A7 regulatory regions also had significantly greater occupancy by modified histones associated with repressed transcription in the fetus. The observed occupancy by modified histones is consistent with chromatin structural dynamics contributing to CYP3A4 ontogeny, although the data are less conclusive regarding CYP3A7. Interpretation of the latter data may be confounded by celltype heterogeneity in the fetal liver
- âŠ