26,352 research outputs found
Magmatic focusing to mid-ocean ridges: the role of grain size variability and non-Newtonian viscosity
Melting beneath mid-ocean ridges occurs over a region that is much broader
than the zone of magmatic emplacement to form the oceanic crust. Magma is
focused into this zone by lateral transport. This focusing has typically been
explained by dynamic pressure gradients associated with corner flow, or by a
sub-lithospheric channel sloping upward toward the ridge axis. Here we discuss
a novel mechanism for magmatic focusing: lateral transport driven by gradients
in compaction pressure within the asthenosphere. These gradients arise from the
co-variation of melting rate and compaction viscosity. The compaction
viscosity, in previous models, was given as a function of melt fraction and
temperature. In contrast, we show that the viscosity variations relevant to
melt focusing arise from grain-size variability and non-Newtonian creep. The
asthenospheric distribution of melt fraction predicted by our models provides
an improved ex- planation of the electrical resistivity structure beneath one
location on the East Pacific Rise. More generally, although grain size and
non-Newtonian viscosity are properties of the solid phase, we find that in the
context of mid-ocean ridges, their effect on melt transport is more profound
than their effect on the mantle corner-flow.Comment: 20 pages, 4 figures, 1 tabl
Mass problems and intuitionistic higher-order logic
In this paper we study a model of intuitionistic higher-order logic which we
call \emph{the Muchnik topos}. The Muchnik topos may be defined briefly as the
category of sheaves of sets over the topological space consisting of the Turing
degrees, where the Turing cones form a base for the topology. We note that our
Muchnik topos interpretation of intuitionistic mathematics is an extension of
the well known Kolmogorov/Muchnik interpretation of intuitionistic
propositional calculus via Muchnik degrees, i.e., mass problems under weak
reducibility. We introduce a new sheaf representation of the intuitionistic
real numbers, \emph{the Muchnik reals}, which are different from the Cauchy
reals and the Dedekind reals. Within the Muchnik topos we obtain a \emph{choice
principle} and a \emph{bounding principle} where range over Muchnik
reals, ranges over functions from Muchnik reals to Muchnik reals, and
is a formula not containing or . For the convenience of the
reader, we explain all of the essential background material on intuitionism,
sheaf theory, intuitionistic higher-order logic, Turing degrees, mass problems,
Muchnik degrees, and Kolmogorov's calculus of problems. We also provide an
English translation of Muchnik's 1963 paper on Muchnik degrees.Comment: 44 page
Embedded Eigenvalues and the Nonlinear Schrodinger Equation
A common challenge to proving asymptotic stability of solitary waves is
understanding the spectrum of the operator associated with the linearized flow.
The existence of eigenvalues can inhibit the dispersive estimates key to
proving stability. Following the work of Marzuola & Simpson, we prove the
absence of embedded eigenvalues for a collection of nonlinear Schrodinger
equations, including some one and three dimensional supercritical equations,
and the three dimensional cubic-quintic equation. Our results also rule out
nonzero eigenvalues within the spectral gap and, in 3D, endpoint resonances.
The proof is computer assisted as it depends on the sign of certain inner
products which do not readily admit analytic representations. Our source code
is available for verification at
http://www.math.toronto.edu/simpson/files/spec_prop_asad_simpson_code.zip.Comment: 29 pages, 27 figures: fixed a typo in an equation from the previous
version, and added two equations to clarif
Two quantum Simpson's paradoxes
The so-called Simpson's "paradox", or Yule-Simpson (YS) effect, occurs in
classical statistics when the correlations that are present among different
sets of samples are reversed if the sets are combined together, thus ignoring
one or more lurking variables. Here we illustrate the occurrence of two
analogue effects in quantum measurements. The first, which we term
quantum-classical YS effect, may occur with quantum limited measurements and
with lurking variables coming from the mixing of states, whereas the second,
here referred to as quantum-quantum YS effect, may take place when coherent
superpositions of quantum states are allowed. By analyzing quantum measurements
on low dimensional systems (qubits and qutrits), we show that the two effects
may occur independently, and that the quantum-quantum YS effect is more likely
to occur than the corresponding quantum-classical one. We also found that there
exist classes of superposition states for which the quantum-classical YS effect
cannot occur for any measurement and, at the same time, the quantum-quantum YS
effect takes place in a consistent fraction of the possible measurement
settings. The occurrence of the effect in the presence of partial coherence is
discussed as well as its possible implications for quantum hypothesis testing.Comment: published versio
Tempo and Mode of Evolution in the Tangled Nature Model
We study the Tangled Nature model of macro evolution and demonstrate that the
co-evolutionary dynamics produces an increasingly correlated core of well
occupied types. At the same time the entire configuration of types becomes
increasing de-correlated. This finding is related to ecosystem evolution. The
systems level dynamics of the model is subordinated to intermittent transitions
between meta-stable states. We improve on previous studies of the statistics of
the transition times and show that the fluctuations in the offspring
probability decreases with number of transitions. The longtime adaptation, as
seen by an increasing population size is demonstrated to be related to the
convexity of the offspring probability. We explain how the models behaviour is
a mathematical reflection of Darwin's concept of adaptation of profitable
variations.Comment: 6 pages, 5 figure
Prevalence and clinical characteristics of left ventricular dysfunction among elderly patients in general practice setting: cross sectional survey
Objective: To assess the prevalence and clinical characteristics of left ventricular dysfunction among elderly patients in the general practice setting by echocardiographic assessment of ventricular function.
Design: Cross sectional survey.
Setting: Four centre general practice in Poole, Dorset.
Subjects: 817 elderly patients aged 70-84 years.
Main outcomes: Echocardiographic assessment of left ventricular systolic function including measurement of ejection fraction by biplane summation method where possible, clinical symptoms, and signs of left ventricular dysfunction.
Results: The overall prevalence of left ventricular systolic dysfunction was 7.5% (95% confidence interval 5.8% to 9.5%); mild dysfunction (5.0%) was considerably more prevalent than moderate (1.6%) or severe dysfunction (0.7%). Measurement of ejection fraction was possible in 82% of patients (n=667): in patients categorised as having mild, moderate, or severe dysfunction, the mean ejection fraction was 48% (SD 12.0), 38% (8.1), and 26% (7.9) respectively. At all ages the prevalence was much higher in men than in women (odds ratio 5.1, 95% confidence interval 2.6 to 10.1). No clinical symptom or sign was both sensitive and specific. In around half the patients with ventricular dysfunction (52%, 32/61) heart failure had not been previously diagnosed.
Conclusions: Unrecognised left ventricular dysfunction is a common problem in elderly patients in the general practice setting. Appropriate treatment with angiotensin converting enzyme inhibitors has the potential to reduce hospitalisation and mortality in these patients, but diagnosis should not be based on clinical history and examination alone. Screening is feasible in general practice, but it should not be implemented until the optimum method of identifying left ventricular dysfunction is clarified, and the cost effectiveness of screening has been shown
Aerial applications dispersal systems control requirements study
Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved
- …