975 research outputs found

    Design of a miniature hydrogen fueled gas turbine engine

    Get PDF
    The design, development, and delivery of a miniature hydrogen-fueled gas turbine engine are discussed. The engine was to be sized to approximate a scaled-down lift engine such as the teledyne CAE model 376. As a result, the engine design emerged as a 445N(100 lb.)-thrust engine flowing 0.86 kg (1.9 lbs.) air/sec. A 4-stage compressor was designed at a 4.0 to 1 pressure ratio for the above conditions. The compressor tip diameter was 9.14 cm (3.60 in.). To improve overall engine performance, another compressor with a 4.75 to 1 pressure ratio at the same tip diameter was designed. A matching turbine for each compressor was also designed. The turbine tip diameter was 10.16 cm (4.0 in.). A combustion chamber was designed, built, and tested for this engine. A preliminary design of the mechanical rotating parts also was completed and is discussed. Three exhaust nozzle designs are presented

    Free Iron Distribution in Some Poorly Drained Prairie Soils in Iowa

    Get PDF
    In classification and mapping of soils an interpretation of the natural drainage characteristics of the soil types is usually made. Some standard natural drainage classes used are poorly drained, imperfectly drained, moderately well- drained, and well-drained (1). Interpretation of the natural drainage of the soils is important from the agronomic standpoint, and also is basic to the soil classification scheme in present use. The natural drainage of a soil is interpreted mainly by inferences from the color and mottling of hydrated iron oxides in the subsoil. Few studies have been made of the nature and quantity of these iron oxides in soils. Extractable iron or free iron has been determined in a few well-drained Brunizem and Gray Brown Podzolic soils, and in several poorly drained Forested Planosols (2) (3) (4) (5). The purpose of this paper is to report data on free iron in several poorly drained prairie (Wiesenboden) soils and to compare these data with available data of other great soil groups in Iowa

    Human Physiological Responses to Cycle Ergometer Leg Exercise During +Gz Acceleration

    Get PDF
    Spaceflight and bed-rest deconditioning decrease maximal oxygen uptake (aerobic power), strength, endurance capacity, and orthostatic tolerance. In addition to extensive use of muscular exercise conditioning as a countermeasure for the reduction in aerobic power (VO(sub 2max)), stimuli from some form of +Gz acceleration conditioning may be necessary to attenuate the orthostatic intolerance component of this deconditioning. Hypothesis: There will be no significant difference in the physiological responses (oxygen uptake, heart rate, ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration

    A New Model for the Spiral Structure of the Galaxy. Superposition of 2+4-armed patterns

    Full text link
    We investigate the possibility of describing the spiral pattern of the Milky Way in terms of a model of superposition 2- and 4-armed wave harmonics (the simplest description, besides pure modes). Two complementary methods are used: a study of stellar kinematics, and direct tracing of positions of spiral arms. In the first method, the parameters of the galactic rotation curve and the free parameters of the spiral density waves were obtained from Cepheid kinematics, under different assumptions. To turn visible the structure corresponding to these models, we computed the evolution of an ensemble of N-particles, simulating the ISM clouds, in the perturbed galactic gravitational field. In the second method, we present a new analysis of the longitude-velocity (l-v) diagram of the sample of galactic HII regions, converting positions of spiral arms in the galactic plane into locii of these arms in the l-v diagram. Both methods indicate that the ``self-sustained'' model, in which the 2-armed and 4-armed mode have different pitch angles (6 arcdeg and 12 arcdeg, respectively) is a good description of the disk structure. An important conclusion is that the Sun happens to be practically at the corotation circle. As an additional result of our study, we propose an independent test for localization of the corotation circle in a spiral galaxy: a gap in the radial distribution of interstellar gas has to be observed in the corotation region.Comment: 17 pages, 9 figures, Latex, uses aas2pp4.st

    Relationship between C-telopeptide pyridinoline cross-links (ICTP) and putative periodontal pathogens in periodontitis

    Full text link
    Crevicular fluid pyridinoline cross-linked carboxyterminal telopeptide of type 1 collagen (ICTP) is predictive for future alveolar bone loss in experimental periodontitis in dogs. The present study sought to relate ICTP to a panel of subgingival species in subjects exhibiting various clinical presentations such as health ( n = 7), gingivitis ( n = 8) and periodontitis (n=21), 28 subgingival plaque and GCF samples were taken from mesiobuccal sites m each of 36 subjects. The presence and levels of 40 subgtngivai taxa were determined in plaque samples using whole genomic DNA probes and checkerboard DNA-DNA hybridization. GCF ICTP levels were quantified using radioimmunoassay (RIA). Clinical assessments made at the same sites included: BOP, gingival redness, plaque, pocket depth, and attachment level. Differences among ICTP levels in the 3 subject groups were sought using the Kruskal-Wallis test. Relationships between ICTP levels and clinical parameters as well as subgingival species were determined by regression analysis. The results demonstrated significant differences among disease categories for GCF ICTP levels for healthy (1.1+0.6 pg/site (mean±SEM)) gingivitis (14.8±6.6 pg/site) and penodontitts subjects (30.3 + 5.7 pg/site) ( p = 0.0017). ICTP levels related modestly to several clinical parameters. Regression analysis indicated that ICTP levels correlated strongly with mean subject levels of several periodontal pathogens including B. forsythus, P. gingivitis, P. intermedia, P. nigrescens and T. dentcola ( p < 0.01). The data indicate that there is a positive relationship between the putative bone resorptive marker ICTP and periodontal pathogens.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74809/1/j.1600-051X.1998.tb02383.x.pd

    Free Energy Simulations of a GTPase: GTP and GDP Binding to Archaeal Initiation Factor 2

    Get PDF
    International audienceArchaeal initiation factor 2 (aIF2) is a protein involved in the initiation of protein biosynthesis. In its GTP-bound, "ON" conformation, aIF2 binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and its dependence on the ON or OFF conformational state of aIF2, molecular dynamics free energy simulations (MDFE) are a tool of choice. However, the validity of the computed free energies depends on the simulation model, including the force field and the boundary conditions, and on the extent of conformational sampling in the simulations. aIF2 and other GTPases present specific difficulties; in particular, the nucleotide ligand coordinates a divalent Mg(2+) ion, which can polarize the electronic distribution of its environment. Thus, a force field with an explicit treatment of electronic polarizability could be necessary, rather than a simpler, fixed charge force field. Here, we begin by comparing a fixed charge force field to quantum chemical calculations and experiment for Mg(2+):phosphate binding in solution, with the force field giving large errors. Next, we consider GTP and GDP bound to aIF2 and we compare two fixed charge force fields to the recent, polarizable, AMOEBA force field, extended here in a simple, approximate manner to include GTP. We focus on a quantity that approximates the free energy to change GTP into GDP. Despite the errors seen for Mg(2+):phosphate binding in solution, we observe a substantial cancellation of errors when we compare the free energy change in the protein to that in solution, or when we compare the protein ON and OFF states. Finally, we have used the fixed charge force field to perform MDFE simulations and alchemically transform GTP into GDP in the protein and in solution. With a total of about 200 ns of molecular dynamics, we obtain good convergence and a reasonable statistical uncertainty, comparable to the force field uncertainty, and somewhat lower than the predicted GTP/GDP binding free energy differences. The sign and magnitudes of the differences can thus be interpreted at a semiquantitative level, and are found to be consistent with the experimental binding preferences of ON- and OFF-aIF2

    Implementing Brazil’s Forest Code: a vital contribution to securing forests and conserving biodiversity

    Get PDF
    Meeting Brazil’s ambitious national commitments on both climate change mitigation and biodiversity conservation depends on securing its reserves of forest carbon and biodiversity. Brazil’s ‘Forest Code’ is a key tool to reconcile environmental preservation and agricultural production; it limits deforestation and requires forest restoration in illegally deforested areas. However, not all provisions of the law’s 2012 revision have yet been implemented and some are facing new challenges. Using modelled land use change projections for the whole of the country, we show that full implementation and enforcement of the law has the potential to contribute to conserving biodiversity. Biodiversity outcomes will be especially positive if (i) deforested areas are restored in ways that support recolonization by native species and (ii) additional measures are implemented to protect native vegetation in areas like Caatinga dry forests and Cerrado savannas, which may experience added pressure displaced from other regions by Forest Code implementation

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page
    corecore