1,056 research outputs found

    Gauge--invariant field correlators in QCD at finite temperature

    Full text link
    We study by numerical simulations on a lattice the behaviour of the gauge--invariant two--point correlation functions of the gauge field strengths across the deconfinement phase transition.Comment: 12 pages, LaTeX file, + 5 PS figures, uuencoded-tar-compresse

    Field strength correlators in QCD at zero and non-zero temperature

    Get PDF
    We study, by numerical simulations on a lattice, the behaviour of the gauge--invariant field strength correlators in QCD both at zero temperature, down to a distance of 0.1 fm, and at finite temperature, across the deconfinement phase transition.Comment: Talk given at the ``High Energy Conference on Quantum Chromodynamics'', Montpellier (France), 4-12 July 1996 (QCD 96); 5 pages, LaTeX file, uses ``espcrc2.sty''+ 5 PS figure

    The coupled-channel analysis of the D and D_s mesons

    Full text link
    The shift of the p-wave DsD_s meson mass due to coupling to the DK channel is calculated without fitting parameters using the chiral Lagrangian. As a result the original QqˉQ\bar q mass 2.490 MeV generically calculated in the relativistic quark models is shifted down to the experimental value 2317 MeV. With the same Lagrangian the shift of the radial excited 11^- level is much smaller, while the total width Γ>100\Gamma > 100 MeV and the width ratio is in contradiction with the D(2632)D^*(2632) state observed by SELEX group.Comment: 9 pages, 2 figure

    Theory of Quark-Gluon Plasma and Phase Transition

    Full text link
    Nonperturbative picture of strong interacting quark-gluon plasma is given based on the systematic Field Correlator Method. Equation of state, phase transition in density-temperature plane is derived and compared to lattice data as well as subsequent thermodynamical quantities of QGP.Comment: 6 pages,5 figures; talk given at "13th Lomonosov Conference on Elementary Particle Physics", Moscow, August 23 -- 29, 2007; new reference adde

    Glueballs, gluerings and gluestars in the d=2+1 SU(N) gauge theory

    Full text link
    The 3d gluodynamics which governs the large T quark gluon plasma is studied in the framework of the field correlator method. Field correlators and spacial string tension are derived through the gluelump Green's functions. The glueball spectrum is calculated both in C=-1 as well as in C=+1 sectors, and multigluon bound states in the form of "gluon rings" and "gluon stars" are computed explicitly. Good overall agreement with available lattice data is observed.Comment: 19 page

    Dynamics of confined gluons

    Full text link
    Propagation of gluons in the confining vacuum is studied in the framework of the background perturbation theory, where nonperturbative background contains confining correlators. Two settings of the problem are considered. In the first the confined gluon is evolving in time together with static quark and antiquark forming the one-gluon static hybrid. The hybrid spectrum is calculated in terms of string tension and is in agreement with earlier analytic and lattice calculations. In the second setting the confined gluon is exchanged between quarks and the gluon Green's function is calculated, giving rise to the Coulomb potential modified at large distances. The resulting screening radius of 0.5 fm presents a serious problem when confronting with lattice and experimental data. A possible solution of this discrepancy is discussed.Comment: 17 pages, no figures; v2: minor numerical changes in the tabl

    Worldline Casting of the Stochastic Vacuum Model and Non-Perturbative Properties of QCD: General Formalism and Applications

    Full text link
    The Stochastic Vacuum Model for QCD, proposed by Dosch and Simonov, is fused with a Worldline casting of the underlying theory, i.e. QCD. Important, non-perturbative features of the model are studied. In particular, contributions associated with the spin-field interaction are calculated and both the validity of the loop equations and of the Bianchi identity are explicitly demonstrated. As an application, a simulated meson-meson scattering problem is studied in the Regge kinematical regime. The process is modeled in terms of the "helicoidal" Wilson contour along the lines introduced by Janik and Peschanski in a related study based on a AdS/CFT-type approach. Working strictly in the framework of the Stochastic Vacuum Model and in a semiclassical approximation scheme the Regge behavior for the Scattering amplitude is demonstrated. Going beyond this approximation, the contribution resulting from boundary fluctuation of the Wilson loop contour is also estimated.Comment: 37 pages, 1 figure. Final version to appear in Phys.Rev.

    Analytic Methods in Nonperturbative QCD

    Full text link
    Recently developed analytic methods in the framework of the Field Correlator Method are reviewed in this series of four lectures and results of calculations are compared to lattice data and experiment. Recent lattice data demonstrating the Casimir scaling of static quark interaction strongly support the FCM and leave very little space for all other theoretical models, e.g. instanton gas/liquid model. Results of calculations for mesons, baryons, quark-gluon plasma and phase transition temperature demonstrate that new analytic methods are a powerful tool of nonperturbative QCD along with lattice simulations.Comment: LaTeX, 34 pages; Lectures given at the 13th Indian-Summer School "Understanding the Structure of Hadrons", August 28 - September 1, 2000, Prague, Czech Republi

    Nonperturbative mechanisms of strong decays in QCD

    Get PDF
    Three decay mechanisms are derived systematically from the QCD Lagrangian using the field correlator method. Resulting operators contain no arbitrary parameters and depend only on characteristics of field correlators known from lattice and analytic calculations. When compared to existing phenomenological models, parameters are in good agreement with the corresponding fitted values.Comment: 12 pages, latex2

    Current correlators in QCD: OPE versus large distance dynamics

    Full text link
    We analyse the structure of current-current correlators in coordinate space in large NcN_c limit when the corresponding spectral density takes the form of an infinite sum over hadron poles. The latter are computed in the QCD string model with quarks at the ends, including the lowest states, for all channels. The corresponding correlators demonstrate reasonable qualitative agreement with the lattice data without any additional fits. Different issues concerning the structure of the short distance OPE are discussed.Comment: LaTeX, 25 pages, 13 figure
    corecore