371 research outputs found

    Spin Degree of Freedom in a Two-Dimensional Electron Liquid

    Full text link
    We have investigated correlation between spin polarization and magnetotransport in a high mobility silicon inversion layer which shows the metal-insulator transition. Increase in the resistivity in a parallel magnetic field reaches saturation at the critical field for the full polarization evaluated from an analysis of low-field Shubnikov-de Haas oscillations. By rotating the sample at various total strength of the magnetic field, we found that the normal component of the magnetic field at minima in the diagonal resistivity increases linearly with the concentration of ``spin-up'' electrons.Comment: 4 pages, RevTeX, 6 eps-figures, to appear in PR

    A New Liquid Phase and Metal-Insulator Transition in Si MOSFETs

    Full text link
    We argue that there is a new liquid phase in the two-dimensional electron system in Si MOSFETs at low enough electron densities. The recently observed metal-insulator transition results as a crossover from the percolation transition of the liquid phase through the disorder landscape in the system below the liquid-gas critical temperature. The consequences of our theory are discussed for variety of physical properties relevant to the recent experiments.Comment: 12 pages of RevTeX with 3 postscript figure

    Universality in an integer Quantum Hall transition

    Full text link
    An integer Quantum Hall effect transition is studied in a modulation doped p-SiGe sample. In contrast to most examples of such transitions the longitudinal and Hall conductivities at the critical point are close to 0.5 and 1.5 (e^2/h), the theoretically expected values. This allows the extraction of a scattering parameter, describing both conductivity components, which depends exponentially on filling factor. The strong similarity of this functional form to those observed for transitions into the Hall insulating state and for the B=0 metal- insulator transition implies a universal quantum critical behaviour for the transitions. The observation of this behaviour in the integer Quantum Hall effect, for this particular sample, is attributed to the short-ranged character of the potential associated with the dominant scatterers

    Indication of the ferromagnetic instability in a dilute two-dimensional electron system

    Full text link
    The magnetic field B_c, in which the electrons become fully spin-polarized, is found to be proportional to the deviation of the electron density from the zero-field metal-insulator transition in a two-dimensional electron system in silicon. The tendency of B_c to vanish at a finite electron density suggests a ferromagnetic instability in this strongly correlated electron system.Comment: 4 pages, postscript figures included. Revised versio

    Spin Polarization of Two-Dimensional Electrons Determined from Shubnikov-de Haas Oscillations as a Function of Angle

    Full text link
    Recent experiments in the two dimensional electron systems in silicon MOSFETs have shown that the in-plane magnetic field HsatH_{sat} required to saturate the conductivity to its high-field value and the magnetic field HsH_s needed to completely align the spins of the electrons are comparable. By small-angle Shubnikov-de Haas oscillation measurements that allow separate determinations of the spin-up and spin-down subband populations, we show that Hsat=HsH_{sat}=H_s to an accuracy of 5% for electron densities ns>3×1011n_s > 3 \times 10^{11} cm−2^{-2}.Comment: 4 pages, 3 figures; minor changes, references updated and adde

    Possible triplet superconductivity in MOSFETs

    Full text link
    A theory that predicts a spin-triplet, even-parity superconducting ground state in two-dimensional electron systems is re-analyzed in the light of recent experiments showing a possible insulator-to-conductor transition in such systems. It is shown that the observations are consistent with such an exotic superconductivity mechanism, and predictions are made for experiments that would further corroborate or refute this proposal.Comment: 4 pp., REVTeX, psfig, 1 eps fig, final version as publishe

    On the Theory of Metal-Insulator Transitions in Gated Semiconductors

    Full text link
    It is shown that recent experiments indicating a metal-insulator transition in 2D electron systems can be interpreted in terms of a simple model, in which the resistivity is controlled by scattering at charged hole traps located in the oxide layer. The gate voltage changes the number of charged traps which results in a sharp change in the resistivity. The observed exponential temperature dependence of the resistivity in the metallic phase of the transition follows from the temperature dependence of the trap occupation number. The model naturally describes the experimentally observed scaling properties of the transition and effects of magnetic and electric fields.Comment: 4 two-column pages, 4 figures (included in the text

    Classical versus Quantum Effects in the B=0 Conducting Phase in Two Dimensions

    Full text link
    In the dilute two-dimensional electron system in silicon, we show that the temperature below which Shubnikov-de Haas oscillations become apparent is approximately the same as the temperature below which an exponential decrease in resistance is seen in B=0, suggesting that the anomalous behavior in zero field is observed only when the system is in a degenerate (quantum) state. The temperature dependence of the resistance is found to be qualitatively similar in B=0 and at integer Landau level filling factors.Comment: 3 pages, 3 figure

    Metal Insulator transition at B=0 in p-SiGe

    Full text link
    Observations are reported of a metal-insulator transition in a 2D hole gas in asymmetrically doped strained SiGe quantum wells. The metallic phase, which appears at low temperatures in these high mobility samples, is characterised by a resistivity that decreases exponentially with decreasing temperature. This behaviour, and the duality between resistivity and conductivity on the two sides of the transition, are very similar to that recently reported for high mobility Si-MOSFETs.Comment: 4 pages, REVTEX with 3 ps figure

    Parallel Magnetic Field Induced Transition in Transport in the Dilute Two-Dimensional Hole System in GaAs

    Full text link
    A magnetic field applied parallel to the two-dimensional hole system in the GaAs/AlGaAs heterostructure, which is metallic in the absence of an external magnetic field, can drive the system into insulating at a finite field through a well defined transition. The value of resistivity at the transition is found to depend strongly on density
    • …
    corecore