438 research outputs found
A New Liquid Phase and Metal-Insulator Transition in Si MOSFETs
We argue that there is a new liquid phase in the two-dimensional electron
system in Si MOSFETs at low enough electron densities. The recently observed
metal-insulator transition results as a crossover from the percolation
transition of the liquid phase through the disorder landscape in the system
below the liquid-gas critical temperature. The consequences of our theory are
discussed for variety of physical properties relevant to the recent
experiments.Comment: 12 pages of RevTeX with 3 postscript figure
Calculations of exchange interaction in impurity band of two-dimensional semiconductors with out of plane impurities
We calculate the singlet-triplet splitting for a couple of two-dimensional
electrons in the potential of two positively charged impurities which are
located out of plane. We consider different relations between vertical
distances of impurities and and their lateral distance . Such a
system has never been studied in atomic physics but the methods, worked out for
regular two-atomic molecules and helium atom, have been found to be useful.
Analytical expressions for several different limiting configurations of
impurities are obtained an interpolated formula for intermediate range of
parameters is proposed. The -dependence of the splitting is shown to become
weaker with increasing .Comment: 14 pages, RevTeX, 5 figures. Submitted to Phys Rev.
Indication of the ferromagnetic instability in a dilute two-dimensional electron system
The magnetic field B_c, in which the electrons become fully spin-polarized,
is found to be proportional to the deviation of the electron density from the
zero-field metal-insulator transition in a two-dimensional electron system in
silicon. The tendency of B_c to vanish at a finite electron density suggests a
ferromagnetic instability in this strongly correlated electron system.Comment: 4 pages, postscript figures included. Revised versio
Metal-insulator transition at B=0 in a dilute two dimensional GaAs-AlGaAs hole gas
We report the observation of a metal insulator transition at B=0 in a high
mobility two dimensional hole gas in a GaAs-AlGaAs heterostructure. A clear
critical point separates the insulating phase from the metallic phase,
demonstrating the existence of a well defined minimum metallic conductivity
sigma(min)=2e/h. The sigma(T) data either side of the transition can be
`scaled' on to one curve with a single parameter (To). The application of a
parallel magnetic field increases sigma(min) and broadens the transition. We
argue that strong electron-electron interactions (rs = 10) destroy phase
coherence, removing quantum intereference corrections to the conductivity.Comment: 4 pages RevTex + 4 figures. Submitted to PRL. Originally posted 22
September 1997. Revised 12 October 1997 - minor changes to referencing,
figure cations and figure
Unexpected Behavior of the Local Compressibility Near the B=0 Metal-Insulator Transition
We have measured the local electronic compressibility of a two-dimensional
hole gas as it crosses the B=0 Metal-Insulator Transition. In the metallic
phase, the compressibility follows the mean-field Hartree-Fock (HF) theory and
is found to be spatially homogeneous. In the insulating phase it deviates by
more than an order of magnitude from the HF predictions and is spatially
inhomogeneous. The crossover density between the two types of behavior, agrees
quantitatively with the transport critical density, suggesting that the system
undergoes a thermodynamic change at the transition.Comment: As presented in EP2DS-13, Aug. 1999. (4 pages, 4 figures
Possible triplet superconductivity in MOSFETs
A theory that predicts a spin-triplet, even-parity superconducting ground
state in two-dimensional electron systems is re-analyzed in the light of recent
experiments showing a possible insulator-to-conductor transition in such
systems. It is shown that the observations are consistent with such an exotic
superconductivity mechanism, and predictions are made for experiments that
would further corroborate or refute this proposal.Comment: 4 pp., REVTeX, psfig, 1 eps fig, final version as publishe
Interactions and Scaling in a Disordered Two-Dimensional Metal
We show that a non-Fermi liquid state of interacting electrons in two
dimensions is stable in the presence of disorder and is a perfect conductor,
provided the interactions are sufficiently strong. Otherwise, the disorder
leads to localization as in the case of non-interacting electrons. This
conclusion is established by examining the replica field theory in the weak
disorder limit, but in the presence of arbitrary electron-electron interaction.
Thus, a disordered two-dimensional metal is a perfect metal, but not a Fermi
liquid.Comment: 4 pages, RevTe
- …