34 research outputs found

    Modelling T-cell immunity against hepatitis C virus with liver organoids in a microfluidic coculture system.

    Full text link
    Hepatitis C virus (HCV) remains a global public health challenge with an estimated 71 million people chronically infected, with surges in new cases and no effective vaccine. New methods are needed to study the human immune response to HCV since in vivo animal models are limited and in vitro cancer cell models often show dysregulated immune and proliferative responses. Here, we developed a CD8+ T cell and adult stem cell liver organoid system using a microfluidic chip to coculture 3D human liver organoids embedded in extracellular matrix with HLA-matched primary human T cells in suspension. We then employed automated phase contrast and immunofluorescence imaging to monitor T cell invasion and morphological changes in the liver organoids. This microfluidic coculture system supports targeted killing of liver organoids when pulsed with a peptide specific for HCV non-structural protein 3 (NS3) (KLVALGINAV) in the presence of patient-derived CD8+ T cells specific for KLVALGINAV. This demonstrates the novel potential of the coculture system to molecularly study adaptive immune responses to HCV in an in vitro setting using primary human cells

    Tropism of SARS-CoV-2 for Developing Human Cortical Astrocytes

    Full text link
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. It proves fatal for one percent of those infected. Neurological symptoms, which range in severity, accompany a significant proportion of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized primary human cortical tissue and stem cell-derived cortical organoids. We find significant and predominant infection in cortical astrocytes in both primary and organoid cultures, with minimal infection of other cortical populations. Infected astrocytes had a corresponding increase in reactivity characteristics, growth factor signaling, and cellular stress. Although human cortical cells, including astrocytes, have minimal ACE2 expression, we find high levels of alternative coronavirus receptors in infected astrocytes, including DPP4 and CD147. Inhibition of DPP4 reduced infection and decreased expression of the cell stress marker, ARCN1. We find tropism of SARS-CoV-2 for human astrocytes mediated by DPP4, resulting in reactive gliosis-type injury

    Influence of Glycosylation Inhibition on the Binding of KIR3DL1 to HLA-B*57:01

    Full text link
    <div><p>Viral infections can affect the glycosylation pattern of glycoproteins involved in antiviral immunity. Given the importance of protein glycosylation for immune function, we investigated the effect that modulation of the highly conserved HLA class I <i>N</i>-glycan has on KIR:HLA interactions and NK cell function. We focused on HLA-B*57:01 and its interaction with KIR3DL1, which has been shown to play a critical role in determining the progression of a number of human diseases, including human immunodeficiency virus-1 infection. 721.221 cells stably expressing HLA-B*57:01 were treated with a panel of glycosylation enzyme inhibitors, and HLA class I expression and KIR3DL1 binding was quantified. In addition, the functional outcomes of HLA-B*57:01 <i>N</i>-glycan disruption/modulation on KIR3DL1ζ<sup>+</sup> Jurkat reporter cells and primary human KIR3DL1<sup>+</sup> NK cells was assessed. Different glycosylation enzyme inhibitors had varying effects on HLA-B*57:01 expression and KIR3DL1-Fc binding. The most remarkable effect was that of tunicamycin, an inhibitor of the first step of <i>N</i>-glycosylation, which resulted in significantly reduced KIR3DL1-Fc binding despite sustained expression of HLA-B*57:01 on 721.221 cells. This effect was paralleled by decreased activation of KIR3DL1ζ<sup>+</sup> Jurkat reporter cells, as well as increased degranulation of primary human KIR3DL1<sup>+</sup> NK cell clones when encountering HLA-B*57:01-expressing 721.221 cells that were pre-treated with tunicamycin. Overall, these results demonstrate that <i>N</i>-glycosylation of HLA class I is important for KIR:HLA binding and has an impact on NK cell function.</p></div

    Glycosylation inhibitor screening and titration: (A) Median fluorescence intensity (MFI) of Bw4 staining of untransfected 221 cells (221) and HLA-B*57:01 transfected 221 cells (B57) treated with a panel of glycosylation inhibitors (n = 2) (B) MFI of KIR-Fc staining of untransfected 221 cells (221) and HLA-B*57:01 transfected 221 cells (B57) treated with a panel of glycosylation inhibitors (n = 2)

    Full text link
    <p>Glycosylation inhibitor screening and titration: (A) Median fluorescence intensity (MFI) of Bw4 staining of untransfected 221 cells (221) and HLA-B*57:01 transfected 221 cells (B57) treated with a panel of glycosylation inhibitors (n = 2) (B) MFI of KIR-Fc staining of untransfected 221 cells (221) and HLA-B*57:01 transfected 221 cells (B57) treated with a panel of glycosylation inhibitors (n = 2)</p
    corecore