8 research outputs found
Antigenic sin and multiple breakthrough infections drive converging evolution of COVID-19 neutralizing responses
Understanding the evolution of the B cell response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is fundamental to design the next generation of vaccines and therapeutics. We longitudinally analyze at the single-cell level almost 900 neutralizing human monoclonal antibodies (nAbs) isolated from vaccinated people and from individuals with hybrid and super hybrid immunity (SH), developed after three mRNA vaccine doses and two breakthrough infections. The most potent neutralization and Fc functions against highly mutated variants belong to the SH cohort. Repertoire analysis shows that the original Wuhan antigenic sin drives the convergent expansion of the same B cell germlines in vaccinated and SH cohorts. Only Omicron breakthrough infections expand previously unseen germ lines and generate broadly nAbs by restoring IGHV3-53/3-66 germ lines. Our analyses find that B cells initially expanded by the original antigenic sin continue to play a fundamental role in the evolution of the immune response toward an evolving virus
Transforming vaccine development
The urgency to develop vaccines against Covid-19 is putting pressure on the long and expensive development timelines that are normally required for development of lifesaving vaccines. There is a unique opportunity to take advantage of new technologies, the smart and flexible design of clinical trials, and evolving regulatory science to speed up vaccine development against Covid-19 and transform vaccine development altogether
Vaccines for a sustainable planet
The health of the planet is one objective of the United Nations' Sustainable Development Goals. Vaccines can affect not only human health but also planet health by reducing poverty, preserving microbial diversity, reducing antimicrobial resistance, and preventing an increase in pandemics that is fueled partly by climate change