1,128 research outputs found
A stabilized linear finite element method for anisotropic poroelastodynamics with application to cardiac perfusion
We propose a variational multiscale method stabilization of a linear finite element method for nonlinear poroelasticity. Our approach is suitable for the implicit time integration of poroelastic formulations in which the solid skeleton is anisotropic and incompressible. A detailed numerical methodology is presented for a monolithic formulation that includes both structural dynamics and Darcy flow. Our implementation of this methodology is verified using several hyperelastic and poroelastic benchmark cases, and excellent agreement is obtained with the literature. Grid convergence studies for both anisotropic hyperelastodynamics and poroelastodynamics demonstrate that the method is second-order accurate. The capabilities of our approach are demonstrated using a model of the left ventricle (LV) of the heart derived from human imaging data. Simulations using this model indicate that the anisotropicity of the myocardium has a substantial influence on the pore pressure. Furthermore, the temporal variations of the various components of the pore pressure (hydrostatic pressure and pressure resulting from changes in the volume of the pore fluid) are correlated with the variation of the added mass and dynamics of the LV, with maximum pore pressure being obtained at peak systole. The order of magnitude and the temporal variation of the pore pressure are in good agreement with the literature
South African HIV-1 Subtype C Transmitted Variants With A Specific V2 Motif Show Higher Dependence On aα4β7 For Replication
Background: The integrin aα4β7 mediates the trafficking of immune cells to the gut associated lymphoid tissue (GALT) and is an attachment factor for the HIV gp120 envelope glycoprotein. We developed a viral replication inhibition assay to more clearly evaluate the role of aα4β7 in HIV infection and the contribution of viral and host factors. Results: Replication of 60 HIV-1 subtype C viruses collected over time from 11 individuals in the CAPRISA cohort were partially inhibited by antibodies targeting aα4β7. However, dependence on aα4β7 for replication varied substantially among viral isolates from different individuals as well as over time in some individuals. Among 8 transmitted/founder (T/F) viruses, aα4β7 reactivity was highest for viruses having P/SDI/V tri-peptide binding motifs. Mutation of T/F viruses that had LDI/L motifs to P/SDI/V resulted in greater aα4β7 reactivity, whereas mutating P/SDI/V to LDI/L motifs was associated with reduced aα4β7 binding. P/SDI/V motifs were more common among South African HIV subtype C viruses (35%) compared to subtype C viruses from other regions of Africa
Adaptability and reproducibility of a memory disruption rTMS protocol in the PharmaCog IMI European project
Transcranial magnetic stimulation (TMS) can interfere with cognitive processes, such as transiently impairing memory. As part of a multi-center European project, we investigated the adaptability and reproducibility of a previously published TMS memory interfering protocol in two centers using EEG or fMRI scenarios. Participants were invited to attend three experimental sessions on different days, with sham repetitive TMS (rTMS) applied on day 1 and real rTMS on days 2 and 3. Sixty-eight healthy young men were included. On each experimental day, volunteers were instructed to remember visual pictures while receiving neuronavigated rTMS trains (20 Hz, 900 ms) during picture encoding at the left dorsolateral prefrontal cortex (L-DLPFC) and the vertex. Mixed ANOVA model analyses were performed. rTMS to the L-DLPFC significantly disrupted recognition memory on experimental day 2. No differences were found between centers or between fMRI and EEG recordings. Subjects with lower baseline memory performances were more susceptible to TMS disruption. No stability of TMS-induced memory interference could be demonstrated on day 3. Our data suggests that adapted cognitive rTMS protocols can be implemented in multi-center studies incorporating standardized experimental procedures. However, our center and modality effects analyses lacked sufficient statistical power, hence highlighting the need to conduct further studies with larger samples. In addition, inter and intra-subject variability in response to TMS might limit its application in crossover or longitudinal studies
Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells
Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities
Despite delayed kinetics, people living with HIV achieve equivalent antibody function after SARS-CoV-2 infection or vaccination
The kinetics of Fc-mediated functions following SARS-CoV-2 infection or vaccination in people living with HIV (PLWH) are not known. We compared SARS-CoV-2 spike-specific Fc functions, binding, and neutralization in PLWH and people without HIV (PWOH) during acute infection (without prior vaccination) with either the D614G or Beta variants of SARS-CoV-2, or vaccination with ChAdOx1 nCoV-19. Antiretroviral treatment (ART)–naïve PLWH had significantly lower levels of IgG binding, neutralization, and antibody-dependent cellular phagocytosis (ADCP) compared with PLWH on ART. The magnitude of antibody-dependent cellular cytotoxicity (ADCC), complement deposition (ADCD), and cellular trogocytosis (ADCT) was differentially triggered by D614G and Beta. The kinetics of spike IgG-binding antibodies, ADCC, and ADCD were similar, irrespective of the infecting variant between PWOH and PLWH overall. However, compared with PWOH, PLWH infected with D614G had delayed neutralization and ADCP. Furthermore, Beta infection resulted in delayed ADCT, regardless of HIV status. Despite these delays, we observed improved coordination between binding and neutralizing responses and Fc functions in PLWH. In contrast to D614G infection, binding responses in PLWH following ChAdOx-1 nCoV-19 vaccination were delayed, while neutralization and ADCP had similar timing of onset, but lower magnitude, and ADCC was significantly higher than in PWOH. Overall, despite delayed and differential kinetics, PLWH on ART develop comparable responses to PWOH, supporting the prioritization of ART rollout and SARS-CoV-2 vaccination in PLWH
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
Despite delayed kinetics, people living with HIV achieve equivalent antibody function after SARS-CoV-2 infection or vaccination
DATA AVAILABILITY STATEMENT : The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.The kinetics of Fc-mediated functions following SARS-CoV-2 infection or
vaccination in people living with HIV (PLWH) are not known. We compared
SARS-CoV-2 spike-specific Fc functions, binding, and neutralization in PLWH
and people without HIV (PWOH) during acute infection (without prior
vaccination) with either the D614G or Beta variants of SARS-CoV-2, or
vaccination with ChAdOx1 nCoV-19. Antiretroviral treatment (ART)–naïve
PLWH had significantly lower levels of IgG binding, neutralization, and
antibody-dependent cellular phagocytosis (ADCP) compared with PLWH on
ART. The magnitude of antibody-dependent cellular cytotoxicity (ADCC),
complement deposition (ADCD), and cellular trogocytosis (ADCT) was
differentially triggered by D614G and Beta. The kinetics of spike IgG-binding
antibodies, ADCC, and ADCD were similar, irrespective of the infecting variant
between PWOH and PLWH overall. However, compared with PWOH, PLWH
infected with D614G had delayed neutralization and ADCP. Furthermore, Beta
infection resulted in delayed ADCT, regardless of HIV status. Despite these
delays, we observed improved coordination between binding and neutralizing
responses and Fc functions in PLWH. In contrast to D614G infection, binding
responses in PLWH following ChAdOx-1 nCoV-19 vaccination were delayed,
while neutralization and ADCP had similar timing of onset, but lower magnitude,The South African National Research Foundation, the Poliomyelitis Research Foundation, the University of the Witwatersrand, the South African Research Chairs Initiative of the Department of Science and Innovation, the SA Medical Research Council SHIP program, the Centre for the AIDS Program of Research (CAPRISA), the Bill and Melinda Gates Foundation through the Global Immunology and Immune Sequencing for Epidemic Response (GIISER) program, the Wellcome Trust [226137/Z/22/Z] and the HORIZON programme supported by the European Union.http://www.frontiersin.org/Immunologyam2024ImmunologyInternal MedicineSDG-03:Good heatlh and well-bein
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
- …