28 research outputs found

    Stochastic Thermodynamics of oscillators networks

    Full text link
    We apply the stochastic thermodynamics formalism to describe the dynamics of systems of complex Langevin and Fokker-Planck equations. We provide in particular a simple and general recipe to calculate thermodynamical currents, dissipated and propagating heat for networks of nonlinear oscillators. By using the Hodge decomposition of thermodynamical forces and fluxes, we derive a formula for entropy production that generalises the notion of non-potential forces and makes trans- parent the breaking of detailed balance and of time reversal symmetry for states arbitrarily far from equilibrium. Our formalism is then applied to describe the off-equilibrium thermodynamics of a few examples, notably a continuum ferromagnet, a network of classical spin-oscillators and the Frenkel-Kontorova model of nano friction.Comment: 8 pages, 1 figur

    Multiscale approach to spin transport in magnetic multilayers

    Full text link
    This article discusses two dual approaches to spin transport in magnetic multilayers: a direct, purely quantum, approach based on a Tight-Biding model (TB) and a semiclassical approach (Continuous Random Matrix Theory, CRMT). The combination of both approaches provides a systematic way to perform multi-scales simulations of systems that contain relevant physics at scales larger (spin accumulation, spin diffusion...) and smaller (specular reflexions, tunneling...) than the elastic mean free paths of the layers. We show explicitly that CRMT and TB give consistent results in their common domain of applicability
    corecore