658 research outputs found

    Interface Dipole : Effects on Threshold Voltage and Mobility for both Amorphous and Poly-crystalline Organic Field Effect Transistors

    Full text link
    We report a detailed comparison on the role of a self-assembled monolayer (SAM) of dipolar molecules on the threshold voltage and charge carrier mobility of organic field-effect transistor (OFET) made of both amorphous and polycrystalline organic semiconductors. We show that the same relationship between the threshold voltage and the dipole-induced charges in the SAM holds when both types of devices are fabricated on strictly identical base substrates. Charge carrier mobilities, almost constant for amorphous OFET, are not affected by the dipole in the SAMs, while for polycrystalline OFET (pentacene) the large variation of charge carrier mobilities is related to change in the organic film structure (mostly grain size).Comment: Full paper and supporting informatio

    Physical Study by Surface Characterizations of Sarin Sensor on the Basis of Chemically Functionalized Silicon Nanoribbon Field Effect Transistor

    Full text link
    Surface characterizations of an organophosphorus (OP) gas detector based on chemically functionalized silicon nanoribbon field-effect transistor (SiNR-FET) were performed by Kelvin Probe Force Microscopy (KPFM) and ToF-SIMS, and correlated with changes in the current-voltage characteristics of the devices. KPFM measurements on FETs allow (i) to investigate the contact potential difference (CPD) distribution of the polarized device as function of the gate voltage and the exposure to OP traces and, (ii) to analyze the CPD hysteresis associated to the presence of mobile ions on the surface. The CPD measured by KPFM on the silicon nanoribbon was corrected due to side capacitance effects in order to determine the real quantitative surface potential. Comparison with macroscopic Kelvin probe (KP) experiments on larger surfaces was carried out. These two approaches were quantitatively consistent. An important increase of the CPD values (between + 399 mV and + 302 mV) was observed after the OP sensor grafting, corresponding to a decrease of the work function, and a weaker variation after exposure to OP (between - 14 mV and - 61 mV) was measured. Molecular imaging by ToF-SIMS revealed OP presence after SiNR-FET exposure. The OP molecules were essentially localized on the Si-NR confirming effectiveness and selectivity of the OP sensor. A prototype was exposed to Sarin vapors and succeeded in the detection of low vapor concentrations (40 ppm).Comment: Paper and supporting information, J. Phys. Chem. C, 201

    Experimental analysis of the influence of polymer solutions on performances and cavitation of small size pumps for professional appliances

    Get PDF
    Pumps used in professional appliances process a solution of water, soils residues and detergents. These affect vapor tension, viscosity and rheology of the solution, mainly due to the presence of surfactants and polymers. Only a few studies have been found on how these substances can influence pump performances. Therefore, an experimental analysis has been carried out with aqueous solutions of a detergent component, the Polyox WSR 301, in the concentration range of 100\u20137000 ppm, to evaluate their influence on pump performances and cavitation. Some properties of the solutions have been preliminary characterized with a rheometer. Then, each solution has been tested in a dedicated test rig, to compare the performance curves of a centrifugal pump used in professional warewashing machines with those obtained with pure water. A non-intrusive method, based on the investigation of high frequency vibrations and noise signals, has been developed to detect cavitation at its early stage of inception. It was observed that polymer mitigates cavitating pump vibrations, with a reduction of the acceleration to less than one g. The analysis has provided the data necessary for the successive development of a control strategy for pump operation in professional appliances

    Continuous stellate ganglion block in delayed cerebral ischemia: A possible supplementary approach to traditional therapy?

    Get PDF
    Delayed Cerebral Ischemia (DCI) is a major contributor to morbidity and mortality after SAH. Currently the prevention of vasospasm and DCI relies on nimodipine administration and on maintaining an adequate cerebral perfusion pressure. We report a patient with initial DCI after SAH in which stellate ganglion block (SGB) was performed after nimodipine administration. Firstly the procedure was characterized by a iv and intra-arterial nimodipine administration which did not result into a normal perfusion pattern. Therefore a single-shot stellate ganglion block was performed, as suggested in literature. Because of the not sufficient but promising perfusion improvement, we decided to deliver a continuous ganglion block (cSGB) for 5 days. Consequently a further improvement of the cerebral perfusion on CTPerfusion and Real Time Angiographic Perfusion Assessment was registered. In order to treat cerebral vasospasm, SGB is known to be a further valuable treatment, despite its temporary effect. However the continuous use of SGB during initial DCI has never been described before

    Influence of Polymer Solution on Pump Performances

    Get PDF
    5In professional warewashing machines, as for example the model of Electrolux Rack Type, the working conditions of the pump are affected by the operating fluid properties, which are different from those of pure water. In fact, the actual trend in this kind of professional appliances is to reduce both energy consumption and time needed for cleaning process: this involves short washing cycles conducted at low temperatures with a solution of water and highly concentrated chemistry. Detergents contain different components and additives, as polymers and surfactants, which can affect the performance of the pump, including cavitation inception conditions. Cavitation leads to flow instabilities, affecting pump performances and inducing an increment in the level of vibrations and noise. While cavitation phenomena in Newtonian fluids is well known, particularly as far as pure water is concerned, in literature there are also various studies on cavitating flows in presence of diluted solutions of polymers additives in water, but only few studies are available regarding the effect of detergent components on pumps cavitation and, in general, on pumps performances. The wide range of variables affecting the phenomenon has led to the development of a laboratory rig for testing centrifugal pumps with aqueous solutions representative of those used in the warewashing sector [1]. This paper presents the results of tests performed with various solutions of a polymer (Polyox WSR301) in water. A rheometric analysis has been previously performed on samples of some of the tested solutions, for characterizing their behavior in terms of both viscosity in laminar conditions and their classification as “diluted” or “concentrated”. For each solution, the resulting performance curves of the pump are then compared with those obtained with pure water.openopenBurlon, F.; Micheli, D.; Furlanetto, R.; Simonato, M.; Cucit, V.Burlon, Fabio; Micheli, Diego; Furlanetto, R.; Simonato, M.; Cucit, Valentin

    Cavitation Detection and Prevention in Professional Warewashing Machines

    Get PDF
    Cavitation is a phenomenon characterised by the presence of vapour bubbles in the fluid led by a local drop in pressure. In literature it is well known the impact on cavitation of pressure and temperature of pure water, but there are only few studies analysing how the presence of certain components of detergents and additives can influence the phenomenon. The impact of detergents and additives could be explained by the modified viscosity and rheology of the solution but also by the variation in the vapour tension. Most of these effects are due to the presence of surfactants and polymers in the solution. Cavitation in dynamic pumps is an important aspect that needs to be monitored and prevented, because it can cause damages affecting pump performances and inducing an increment in the level of vibration and noise. In professional warewashing machines, as for example the models of Electrolux Rack Type, this phenomenon can affect the operating functionalities of the machine. An experimental pump test rig has been realized with the aim of studying and monitoring the influence of these parameters on cavitation inception. This test rig permits measuring the pump performances at various operating conditions, in order to obtain its characteristic curves, and also forcing cavitation to measure its Net Positive Suction Head required (NPSHr) at different flow rates. The pump test rig allows also testing various configurations of the pump at different cavitation conditions, obtained by changing not only the suction pressure and temperature of the fluid but also its properties, adding detergents and additives. Cavitation inception can be detected measuring both the corresponding prevalence decrease and the change of vibration and noise level

    Transient model of a Professional Oven

    Get PDF
    Tackling the climate change by reducing energy consumption is among the biggest, most urgent challenges society is facing and requires a continuous efficiency improvement of thermal systems. Appropriate design strategies, developed a priori and then experimentally validated according to suitable test protocols on a prototype, are needed in order to reach potential energy saving targets. These strategies can successfully be implemented in the food service sector, where cooking appliances, in particular, present many possibilities for improving energy savings. Therefore, a valuable design methodology should take into account not only steady state operating conditions but also the transient behaviours of the device, which must be described by means of specially developed theoretical dynamic models. The operating profile of an oven, for example, consists of a sequence of unsteady phases (cavity heating-up, food introduction and extraction, switching from one cooking mode to another) interspersed with steady cooking phases. The dynamic model presented in this paper defines the energy conservation equations of a professional oven, where a high temperature thermal source positioned inside its cavity produces thermal power radiated and modulated over time, according to a suitable control strategy. In particular, when the temperature in the cooking zone of the cavity has reached a specified set point, this is thermostatically controlled in time, depending on the cooking phase. The resulting equation system is then solved by means of numerical methods. With this code, it is possible to support the design phase of both the structure and the control strategy of the oven. It permits, for example, to get a general understanding of the best possible configurations and combinations of insulation materials for the cavity walls or, with reference to the control strategy, to simulate different cooking procedures, with the aim of optimizing the operating sequence of the oven, reaching the maximum energy saving without reducing the cooking quality. The code, validated by comparison with a set of experimental data obtained with a current production model, will be applied in the design phase of a new line of high efficiency professional ovens

    Prevalence of zoonotic helminths in italian house dogs

    Get PDF
    Introduction: Dogs may act as potential sources of zoonotic parasites, e.g. intestinal helminths like Toxocara spp., Ancylostoma spp., Echinococcus spp. In particular circumstances, the environment contaminated by parasitic elements represents a source of infection for people and animals. The present study has evaluated the presence of zoonotic helminths in house dogs from central and north-eastern Italy. Methodology: Stool samples from 493 dogs were examined by a qualitative copromicroscopic technique and differences in prevalence of zoonotic parasites were statistically examined in relation to canine individual data. Results: 48/493 (9.7%) were positive for at least one parasite. Helminths recovered were Trichuris vulpis (5.5%), Toxocara canis (4.3%), Ancylostoma spp. (0.6%) and Eucoleus aerophilus (0.4%), while no cestodes were detected. Age and living with other dogs resulted risk factors for T. canis infection. Conclusions: The health risk associated with the occurrence of parasitic nematodes in privately owned dogs, along with the current anthelmintic treatment plans, are discussed

    Effect of preoperative pulmonary hemodynamic and cardiopulmonary bypass on lung function in children with congenital heart disease

    Get PDF
    In children with congenital heart disease (CHD), pulmonary blood flow (Qp) contributes to alterations of pulmonary mechanics and gas exchange, while cardiopulmonary bypass (CPB) induces lung edema. We aimed to determine the effect of hemodynamics on lung function and lung epithelial lining fluid (ELF) biomarkers in biventricular CHD children undergoing CPB. CHD children were classified as high Qp (n = 43) and low Qp (n = 17), according to preoperative cardiac morphology and arterial oxygen saturation. We measured ELF surfactant protein B (SP-B) and myeloperoxidase activity (MPO) as indexes of lung inflammation and ELF albumin as index of alveolar capillary leak in tracheal aspirate (TA) samples collected before surgery and in 6 hourly intervals within 24 h after surgery. At the same time points, we recorded dynamic compliance and oxygenation index (OI). The same biomarkers were measured in TA samples collected from 16 infants with no cardiorespiratory diseases at the time of endotracheal intubation for elective surgery. Preoperative ELF biomarkers in CHD children were significantly increased than those found in controls. In the high Qp, ELF MPO and SP-B peaked 6 h after surgery and tended to decrease afterward, while they tended to increase within the first 24 h in the low Qp. ELF albumin peaked 6 h after surgery and decreased afterwards in both CHD groups. Dynamic compliance/kg and OI significantly improved after surgery only in the High Qp. Conclusion: In CHD children, lung mechanics, OI, and ELF biomarkers were significantly affected by CPB, according to the preoperative pulmonary hemodynamics.What is Known:• Congenital heart disease children, before cardiopulmonary run, exhibit changes in respiratory mechanics, gas exchange, and lung inflammatory biomarkers that are related to the preoperative pulmonary hemodynamics.• Cardiopulmonary bypass induces alteration of lung function and epithelial lining fluid biomarkers according to preoperative hemodynamics.What is New:• Our findings can help to identify children with congenital heart disease at high risk of postoperative lung injury who may benefit of tailored intensive care strategies, such as non-invasive ventilation techniques, fluid management, and anti-inflammatory drugs that can improve cardiopulmonary interaction in the perioperative period
    • …
    corecore