56 research outputs found

    Iron: a target for the management of Kaposi's sarcoma?

    Get PDF
    BACKGROUND: Kaposi's sarcoma (KS) is a mesenchymal tumour associated with human herpesvirus-8 infection. However, the incidence of human herpesvirus-8 infection is far higher than the prevalence of KS, suggesting that viral infection per se is not sufficient for the development of malignancy and that one or more additional cofactors are required. DISCUSSION: Epidemiological data suggest that iron may be one of the cofactors involved in the pathogenesis of KS. Iron is a well-known carcinogen and may favour KS growth through several pathways. Based on the apoptotic and antiproliferative effect of iron chelation on KS cells, it is suggested that iron withdrawal strategies could be developed for the management of KS. Studies using potent iron chelators in suitable KS animal models are critical to evaluate whether iron deprivation may be a useful anti-KS strategy. SUMMARY: It is suggested that iron may be one of non-viral co-factors involved of KS pathogenesis and that iron withdrawal strategies might interfere with tumour growth in patients with KS

    The Inflammatory Kinase MAP4K4 Promotes Reactivation of Kaposi's Sarcoma Herpesvirus and Enhances the Invasiveness of Infected Endothelial Cells

    Get PDF
    Kaposi's sarcoma (KS) is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV) and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells. © 2013 Haas et al

    Diagnosis and Treatment of Lichen Sclerosus

    Get PDF

    Atypical recurrent varicella in 4 patients with hemopathies.

    Full text link
    Relapsing varicella may occur in children with HIV infection and more rarely in younger adults. Our aim was to report unusual clinical, histologic, and virologic aspects of 4 elderly patients with malignant hemopathies who had an unusual form of recurrent varicella develop. Conventional microscopy, immunohistochemistry, and in situ hybridization were applied to smears and skin biopsy specimens. The patients presented a few dozen, scattered, large, papulovesicular lesions with central crusting. No zoster-associated pain or dermatomal distribution of the lesions was noted. Conventional microscopy revealed vascular changes and epidermal alterations typical for alpha-herpes virus infection. The varicella zoster virus major viral envelope glycoproteins gE and gB, and the immediate-early varicella zoster virus IE63 protein and the corresponding genome sequence for gE were detected on Tzanck smears; they were localized in endothelial cells and keratinocytes on skin biopsy specimens. The varicella zoster virus infection in endothelial cells, the vascular involvement, and the widespread distribution of the lesions suggest that the reported eruptions are vascular rather than neural in origin. These findings invalidate the diagnosis of herpes zoster but strongly support the diagnosis of recurrent varicella in an indolent and yet unreported presentation. Furthermore, these eruptions differ from relapsing varicella in children and young adults by the age of the patients, the paucity of clinical lesions, the larger diameter of the lesions and their peculiar clinical aspect, the significantly longer time interval between primary varicella and the recurrence, the prolonged healing time of the lesions, their mild disease course, and the fact that all the lesions are in the same stage of development
    corecore