92 research outputs found

    Endovascular Management of Juxtarenal and Pararenal Abdominal Aortic Aneurysms: Role of Chimney Technique

    Get PDF
    The use of chimney technique in endovascular repair of abdominal aortic aneurysms (ChEVAR) has had a secondary role. Although it was first developed in an emergent/urgent setting, the publication of various important studies has helped overcome scepticism towards this technique in elective procedures. This paper reviews current evidence about ChEVAR, focusing on clinical results, technical notes and comparisons with other techniques. The new ChEVAR findings show favourable mid- and long-term clinical outcomes, even in elective patients. These results, comparable to those related to fenestrated endografts, have been achieved through standardisation in planning and materials. An adequate endograft oversizing associated to the right aortic neck length is fundamental to avoid ChEVAR-related complications, such as type 1a endoleaks. These data indicate that ChEVAR, compared to other complex endovascular treatments, has comparable outcomes along with features that could make it an essential option in every clinical setting

    Sulfur deprivation results in oxidative perturbation in chlorella sorokiniana (211/8k)

    No full text
    Sulfur deficiency in plant cells has not been considered as a potential abiotic factor that can induce oxidative stress. We studied the antioxidant defense system of Chlorella sorokiniana cultured under sulfur (S) deficiency, imposed for a maximum period of 24 h, to evaluate the effect of an S shortage on oxidative stress. S deprivation induced an immediate (30 min) but transient increase in the intracellular H2O2 content, which suggests that S limitation can lead to a temporary redox disturbance. After 24 h, S deficiency in Chlorella cells decreased the glutathione content to <10% of the value measured in cells that were not subjected to S deprivation. Consequently, we assumed that the cellular antioxidative mechanisms could be altered by a decrease in the total glutathione content. The total ascorbate pool increased within 2 h after the initiation of S depletion, and remained high until 6 h; however, ascorbate regeneration was inhibited under limited S conditions, indicated by a significant decrease in the ascorbate/dehydroascorbate (AsA/DHA) ratios. Furthermore, ascorbate peroxidase (APX) and superoxide dismutase (SOD) were activated under S deficiency, but we assumed that these enzymes were involved in maintaining the cellular H2O2 balance for at least 4 h after the initiation of S starvation. We concluded that S deprivation triggers redox changes and induces antioxidant enzyme activities in Chlorella cells. The accumulation of total ascorbate, changes in the reduced glutathione/oxidized glutathione (GSH/GSSG) ratios and an increase in the activity of SOD and APX enzymes indicate that oxidative perturbation occurs during S deprivation

    Glucose-6-phosphate dehydrogenase in barley roots: kinetic properties and localization of the isoforms.

    No full text
    corecore