11,001 research outputs found
Hamilton's Turns for the Lorentz Group
Hamilton in the course of his studies on quaternions came up with an elegant
geometric picture for the group SU(2). In this picture the group elements are
represented by ``turns'', which are equivalence classes of directed great
circle arcs on the unit sphere , in such a manner that the rule for
composition of group elements takes the form of the familiar parallelogram law
for the Euclidean translation group. It is only recently that this construction
has been generalized to the simplest noncompact group , the double cover of SO(2,1). The present work develops a theory of
turns for , the double and universal cover of SO(3,1) and ,
rendering a geometric representation in the spirit of Hamilton available for
all low dimensional semisimple Lie groups of interest in physics. The geometric
construction is illustrated through application to polar decomposition, and to
the composition of Lorentz boosts and the resulting Wigner or Thomas rotation.Comment: 13 pages, Late
Quantitative spectroscopy of extreme helium stars - Model atmospheres and a non-LTE abundance analysis of BD+102179?
Extreme helium stars (EHe stars) are hydrogen-deficient supergiants of
spectral type A and B. They are believed to result from mergers in double
degenerate systems. In this paper we present a detailed quantitative non-LTE
spectral analysis for BD+102179, a prototype of this rare class of
stars, using UVES and FEROS spectra covering the range from 3100 to 10
000 {\AA}. Atmosphere model computations were improved in two ways. First,
since the UV metal line blanketing has a strong impact on the
temperature-density stratification, we used the Atlas12 code. Additionally, We
tested Atlas12 against the benchmark code Sterne3, and found only small
differences in the temperature and density stratifications, and good agreement
with the spectral energy distributions. Second, 12 chemical species were
treated in non-LTE. Pronounced non-LTE effects occur in individual spectral
lines but, for the majority, the effects are moderate to small. The
spectroscopic parameters give = 17 300300 K and
= 2.800.10, and an evolutionary mass of 0.550.05 . The star
is thus slightly hotter, more compact and less massive than found in previous
studies. The kinematic properties imply a thick-disk membership, which is
consistent with the metallicity Fe/H and -enhancement.
The refined light-element abundances are consistent with the white dwarf merger
scenario. We further discuss the observed helium spectrum in an appendix,
detecting dipole-allowed transitions from about 150 multiplets plus the most
comprehensive set of known/predicted isolated forbidden components to date.
Moreover, a so far unreported series of pronounced forbidden He I components is
detected in the optical-UV.Comment: Accepted for publication in MNRAS, 26 pages, 19 Figure
Assumptions that imply quantum dynamics is linear
A basic linearity of quantum dynamics, that density matrices are mapped
linearly to density matrices, is proved very simply for a system that does not
interact with anything else. It is assumed that at each time the physical
quantities and states are described by the usual linear structures of quantum
mechanics. Beyond that, the proof assumes only that the dynamics does not
depend on anything outside the system but must allow the system to be described
as part of a larger system. The basic linearity is linked with previously
established results to complete a simple derivation of the linear Schrodinger
equation. For this it is assumed that density matrices are mapped one-to-one
onto density matrices. An alternative is to assume that pure states are mapped
one-to-one onto pure states and that entropy does not decrease.Comment: 10 pages. Added references. Improved discussion of equations of
motion for mean values. Expanded Introductio
Beyond happiness: Building a science of discrete positive emotions.
While trait positive emotionality and state positive-valence affect have long been the subject of intense study, the importance of differentiating among several "discrete" positive emotions has only recently begun to receive serious attention. In this article, we synthesize existing literature on positive emotion differentiation, proposing that the positive emotions are best described as branches of a "family tree" emerging from a common ancestor mediating adaptive management of fitness-critical resources (e.g., food). Examples are presented of research indicating the importance of differentiating several positive emotion constructs. We then offer a new theoretical framework, built upon a foundation of phylogenetic, neuroscience, and behavioral evidence, that accounts for core features as well as mechanisms for differentiation. We propose several directions for future research suggested by this framework and develop implications for the application of positive emotion research to translational issues in clinical psychology and the science of behavior change. (PsycINFO Database Recor
On the degrees of freedom of the smoothing parameter
The smoothing parameters in a semiparametric model are estimated based on criteria such as generalized cross-validation or restricted maximum likelihood. As these parameters are estimated in a data driven manner they influence the degrees of freedom of a semiparametric model, based on Stein’s lemma. This allows us to associate parts of the degrees of freedom of a semiparametric model to the smoothing parameters. A framework is introduced that enables these degrees of freedom of the smoothing parameters to be derived analytically, based on the implicit function theorem. The degrees of freedom of the smoothing parameters are efficient to compute and have a geometrical interpretation. The practical importance of this finding is highlighted by a simulation study and an application, showing that ignoring the degrees of freedom of the smoothing parameters in AIC based model selection, leads to an increase in the post selection prediction error
Lithostratigraphy, sedimentation and evolution of the Volta Basin in Ghana
We present a revised lithostratigraphy for the Voltaian Supergroup of Ghana, based on a review of existing literature, interpretations of remotely sensed data and reconnaissance field survey of the Volta Basin. These strata thicken eastwards, to a maximum of between 5 and 6 km adjacent to the Pan-African Dahomeyide orogen. They began to accumulate some time after about 1000 Ma, along the margin of an epicontinental sea. Initial sedimentation, comprising the age-equivalent Kwahu and Bombouaka Groups, shows a cyclical mode of deposition controlled by eustatic changes in sea-level that produced a range of nearshore marine, littoral and terrestrial environments.
A major erosional interval was followed by deposition of the 3–4 km thick Oti-Pendjari Group. Basal tillites and associated sandy diamictons are correlated with the Marinoan (end-Cryogenian) glaciation, indicating a maximum depositional age of about 635 Ma. The overlying cap carbonates and tuffs were deposited within a shallow epeiric sea bordered by a volcanically active rift system. The main part of the group records the transition from a rifted passive margin to a fully developed foreland basin receiving marine flysch in the form of argillaceous strata interbedded with highly immature wacke-type sandstones and conglomerates. Maximum accommodation space was developed within a foredeep adjacent to the Dahomeyide belt. Towards the end of the orogenic phase, the foredeep succession became partially inverted and then was buried under coarse terrestrial, red-bed molasse of the Obosum Group
Purification of Single-photon Entanglement
Single-photon entanglement is a simple form of entanglement that exists
between two spatial modes sharing a single photon. Despite its elementary form,
it provides a resource as useful as polarization-entangled photons and it can
be used for quantum teleportation and entanglement swapping operations. Here,
we report the first experiment where single-photon entanglement is purified
with a simple linear-optics based protocol. Besides its conceptual interest,
this result might find applications in long distance quantum communication
based on quantum repeaters.Comment: Main article: 5 pages, 4 figure
- …