109 research outputs found
Citizen science:A new perspective to advance spatial pattern evaluation in hydrology
Citizen science opens new pathways that can complement traditional scientific practice. Intuition and reasoning often make humans more effective than computer algorithms in various realms of problem solving. In particular, a simple visual comparison of spatial patterns is a task where humans are often considered to be more reliable than computer algorithms. However, in practice, science still largely depends on computer based solutions, which inevitably gives benefits such as speed and the possibility to automatize processes. However, the human vision can be harnessed to evaluate the reliability of algorithms which are tailored to quantify similarity in spatial patterns. We established a citizen science project to employ the human perception to rate similarity and dissimilarity between simulated spatial patterns of several scenarios of a hydrological catchment model. In total, the turnout counts more than 2500 volunteers that provided over 43000 classifications of 1095 individual subjects. We investigate the capability of a set of advanced statistical performance metrics to mimic the human perception to distinguish between similarity and dissimilarity. Results suggest that more complex metrics are not necessarily better at emulating the human perception, but clearly provide auxiliary information that is valuable for model diagnostics. The metrics clearly differ in their ability to unambiguously distinguish between similar and dissimilar patterns which is regarded a key feature of a reliable metric. The obtained dataset can provide an insightful benchmark to the community to test novel spatial metrics
Governance Struggles and Policy Processes in Disaster Risk Reduction: A Case Study from Nepal
In the neo-liberal climate of reduced responsibility for the state, alongside global platforms established to implement the Hyogo Framework for Action, a new arena opens for a multitude of stakeholders to engage in disaster risk reduction (DRR). The key role that the state can play in instituting effective DRR tends to receive little attention, yet in situations where the state apparatus is weak, such as in Nepal, it becomes evident that integrating DRR into development is a particularly challenging task. Due to the political situation in Nepal, progress has been stalled in providing a legislative context conducive to effective DRR. This paper traces the evolution of key DRR initiatives that have been developed in spite of the challenging governance context, such as the National Strategy for Disaster Risk Management and the Nepal Risk Reduction Consortium. Informed by in-depth interviews with key informants, the argument is made that the dedicated efforts of national and international non-governmental organisations, multilateral agencies and donors in mainstreaming DRR demonstrate that considerable progress can be made even where government departments are protective of their own interests and are slow to enact policies to support DRR. The paper suggests however, that without stronger engagement of key political actors the prospects for further progress in DRR may be limited. The findings have implications for other post-conflict countries or weak states engaging in DRR
Spatial validation of large-scale land surface models against monthly land surface temperature patterns using innovative performance metrics
Land surface models (LSMs) are a key tool to enhance process understanding and to provide predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration (aET), at each grid cell. LST observations are widely available through satellite remote sensing platforms that enable comprehensive spatial validations of LSMs. In spite of the great availability of LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true spatial pattern information. The core novelty of this study is the development and application of two innovative spatial performance metrics, namely, empirical orthogonal function (EOF) and connectivity analyses, to validate predicted LST patterns by three LSMs (Mosaic, Noah, Variable Infiltration Capacity (VIC)) over the contiguous United States. The LST validation data set is derived from global High-Resolution Infrared Radiometric Sounder retrievals for a30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality and attests better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, more than 75% of the LST variability can be captured by a single pattern that is strongly correlated to air temperature.The connectivity analysis assesses the homogeneity and smoothness of patterns. The LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the coupling between aET and LST is investigated at flux tower sites and compared against LSMs to explain the identified LST shortcomings<br/
Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model
Abstract. Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.</jats:p
Spatial pattern oriented multicriteria sensitivity analysis of a distributed hydrologic model
Hydrologic models are conventionally constrained and evaluated using point measurements of streamflow, which represent an aggregated catchment measure. As a consequence of this single objective focus, model parametrization and model parameter sensitivity typically do not reflect other aspects of catchment behavior. Specifically for distributed models, the spatial pattern aspect is often overlooked. Our paper examines the utility of multiple performance measures in a spatial sensitivity analysis framework to determine the key parameters governing the spatial variability of predicted actual evapotranspiration (AET). The Latin hypercube one-at-a-time (LHS-OAT) sampling strategy with multiple initial parameter sets was applied using the mesoscale hydrologic model (mHM) and a total of 17 model parameters were identified as sensitive. The results indicate different parameter sensitivities for different performance measures focusing on temporal hydrograph dynamics and spatial variability of actual evapotranspiration. While spatial patterns were found to be sensitive to vegetation parameters, streamflow dynamics were sensitive to pedo-transfer function (PTF) parameters. Above all, our results show that behavioral model definitions based only on streamflow metrics in the generalized likelihood uncertainty estimation (GLUE) type methods require reformulation by incorporating spatial patterns into the definition of threshold values to reveal robust hydrologic behavior in the analysis
- …