140 research outputs found

    Phase II trial of weekly 24-hour infusion of gemcitabine in patients with advanced gallbladder and biliary tract carcinoma

    Get PDF
    BACKGROUND: Patients with advanced gallbladder and biliary tract carcinoma face a dismal prognosis, as no effective palliative chemotherapy exists. The antitumor effect of gemcitabine is schedule-dependent rather than dose-dependent. We evaluated the activity of a prolonged infusion of gemcitabine in advanced gallbladder and biliary tract carcinomas. METHODS: Nineteen consecutive eligible patients were enrolled. All patients were required to have histologically confirmed diagnosis and measurable disease. Gemcitabine was infused over 24 hours at a dose of 100 mg/m(2 )on days 1, 8, and 15. Treatment was repeated every 28 days until progression of disease or limiting toxicity. Tumor response was evaluated every second course by computed tomography (CT) scans. RESULTS: Eighteen patients were evaluable for response. A total of 89 cycles of therapy were administered. One partial response was observed (6%; 95% confidence interval (CI): 0–27%) and ten additional patients had stable disease for at least two months (disease control rate 61%; 95% CI: 36–83%). The therapy was well tolerated, with moderate myelosuppression as the main toxicity. The median time to tumor progression and median overall survival was 3.6 months (95% CI 2.6–4.6 months) and 7.5 months (95% CI 6.5–8.5 months), respectively. CONCLUSION: Weekly 24-hour gemcitabine at a dose of 100 mg/m(2 )is well tolerated. There was a relatively high rate of disease control for a median duration of 5.3 months (range 2.8–18.8 months). However, the objective response rate of this regimen in gallbladder and biliary tract carcinomas was limited

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Phase I/II trial of doxorubicin and fixed dose-rate infusion gemcitabine in advanced soft tissue sarcomas: a GEIS study

    Get PDF
    The aim of the study was to determine the dose-limiting toxicity and maximum tolerated dose of a first-line combination of doxorubicin and gemcitabine in adult patients with advanced soft tissue sarcomas and to explore its activity and toxicity, and the presence of possible interactions between these agents. Patients with measurable disease were initially treated with doxorubicin 60 mg m−2 by i.v. bolus on day 1 followed by gemcitabine at 800 mg m−2 over 80 min on days 1 and 8, every 21 days. Concentrations of gemcitabine and 2â€Č,2â€Č-difluorodeoxyuridine in plasma, and gemcitabine triphosphate levels in peripheral blood mononuclear cells were determined during 8 h after the start of gemcitabine infusion. Myelosuppression and stomatitis were limiting toxicities, and the initial dose level was applied for the Phase II trial, where grade 3–4 granulocytopenia occurred in 70% of patients, grade 3 stomatitis in 46% and febrile neutropenia in 20%. Objective activity in 36 patients was 22% (95% CI: 9–35%), and a 50% remission rate was noted in leiomyosarcomas. Administration of doxorubicin preceding gemcitabine significantly reduced the synthesis of gemcitabine triphosphate. Clinical activity, similar to that of single-agent doxorubicin, and the toxicity encountered do not justify further studies with this schedule of administration

    T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers

    Get PDF
    Introduction: Lymphocyte infiltration (LI) is often seen in breast cancer but its importance remains controversial. A positive correlation of human epidermal growth factor receptor 2 (HER2) amplification and LI has been described, which was associated with a more favorable outcome. However, specific lymphocytes might also promote tumor progression by shifting the cytokine milieu in the tumor. Methods: Affymetrix HG-U133A microarray data of 1,781 primary breast cancer samples from 12 datasets were included. The correlation of immune system-related metagenes with different immune cells, clinical parameters, and survival was analyzed. Results: A large cluster of nearly 600 genes with functions in immune cells was consistently obtained in all datasets. Seven robust metagenes from this cluster can act as surrogate markers for the amount of different immune cell types in the breast cancer sample. An IgG metagene as a marker for B cells had no significant prognostic value. In contrast, a strong positive prognostic value for the T-cell surrogate marker (lymphocyte-specific kinase (LCK) metagene) was observed among all estrogen receptor (ER)-negative tumors and those ER-positive tumors with a HER2 overexpression. Moreover ER-negative tumors with high expression of both IgG and LCK metagenes seem to respond better to neoadjuvant chemotherapy. Conclusions: Precise definitions of the specific subtypes of immune cells in the tumor can be accomplished from microarray data. These surrogate markers define subgroups of tumors with different prognosis. Importantly, all known prognostic gene signatures uniformly assign poor prognosis to all ER-negative tumors. In contrast, the LCK metagene actually separates the ER-negative group into better or worse prognosis

    A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants

    Get PDF
    Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164\ua0Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter
    • 

    corecore