5,055 research outputs found
Dynamical decoupling and dephasing in interacting two-level systems
We implement dynamical decoupling techniques to mitigate noise and enhance
the lifetime of an entangled state that is formed in a superconducting flux
qubit coupled to a microscopic two-level system. By rapidly changing the
qubit's transition frequency relative to the two-level system, we realize a
refocusing pulse that reduces dephasing due to fluctuations in the transition
frequencies, thereby improving the coherence time of the entangled state. The
coupling coherence is further enhanced when applying multiple refocusing
pulses, in agreement with our noise model. The results are applicable to
any two-qubit system with transverse coupling, and they highlight the potential
of decoupling techniques for improving two-qubit gate fidelities, an essential
prerequisite for implementing fault-tolerant quantum computing
Cleaner wrasse forage on ectoparasitic Digeneans (Phylum Platyhelminthes) that infect pelagic thresher sharks (Alopias pelagicus)
The final publication is available at Springer via http://dx.doi.org/10.1007/s12526-014-0290-8This article discusses a study of ectoparasite specimens that were taken from the cloacas of dead pelagic thresher sharks caught in the central Visayas of the Philippines
Long-term microparticle flux variability indicated by comparison of Interplanetary Dust Experiment (IDE) timed impacts for LDEF's first year in orbit with impact data for the entire 5.77-year orbital lifetime
The electronic sensors of the Interplanetary Dust Experiment (IDE) recorded precise impact times and approximate directions for submicron to approximately 100 micron size particles on all six primary sides of the spacecraft for the first 346 days of the LDEF orbital mission. Previously-reported analyses of the timed impact data have established their spatio-temporal features, including the demonstration that a preponderance of the particles in this regime are orbital debris and that a large fraction of the debris particles are encountered in megameter-size clouds. Short-term fluxes within such clouds can rise several orders of magnitude above the long-term average. These unexpectedly large short-term variations in debris flux raise the question of how representative an indication of the multi-year average flux is given by the nearly one year of timed data. One of the goals of the IDE was to conduct an optical survey of impact sites on detectors that remained active during the entire LDEF mission, to obtain full-mission fluxes. We present here the comparisons and contrasts among the new IDE optical survey impact data, the IDE first-year timed impact data, and impact data from other LDEF micrometeoroid and debris experiments. The following observations are reported: (1) the 5.77 year long-term integrated microparticle impact fluxes recorded by IDE detectors matched the integrated impact fluxes measured by other LDEF investigators for the same period; (2) IDE integrated microparticle impact fluxes varied by factors from 0.5 to 8.3 for LDEF days 1-346, 347-2106 and 1-2106 (5.77 years) on rows 3 (trailing edge, or West), 6 (South side), 12 (North side), and the Earth and Space ends; and (3) IDE integrated microparticle impact fluxes varied less than 3 percent for LDEF days 1-346, 347-2106 and 1-2106 (5.77 years) on row 9 (leading edge, or East). These results give further evidence of the accuracy and internal consistency of the recorded IDE impact data. This leads to the further conclusion that the utility of long-term ratios for impacts on various sides of a stabilized satellite in low Earth orbit (LEO) is extremely limited. These observations and their consequences highlight the need for continuous, real time monitoring of the dynamic microparticle environment in LEO
Validation of a German version of the Boredom Proneness Scale and the Multidimensional State Boredom Scale
The scientific interest in boredom is growing over the past decades. Boredom has not only been linked to symptoms of psychopathology, but also shows a remarkable effect on individual behavior under healthy conditions. Current characterizations of boredom in humans mostly rely on self-report assessments which proved to faithfully reflect boredom in a vast range of experimental environments. Two of the most commonly used and prominent self-report scales in order to assess boredom are the Multidimensional State Boredom Scale (MSBS) and the Boredom Proneness Scale (BPS). Here, we present the German translations of both questionnaires and their validation. We obtained and analyzed psychometric data from more than 800 healthy individuals. We find that the German MSBS and BPS show vast congruence with their originals in respect to item statistics, internal reliability and validity. In particular, we find remarkable associations of state boredom and trait boredom with indicators of mental burden. Testing the factor structure of both questionnaires, we find supporting evidence for a 5-factor model of the MSBS, whereas the BPS in line with its original shows an irregular, inconsistent factor structure. Thus, we validate the German versions of MSBS and BPS and set a starting point for further studies of boredom in German-speaking collectives
A tunable coupling scheme for implementing high-fidelity two-qubit gates
The prospect of computational hardware with quantum advantage relies
critically on the quality of quantum gate operations. Imperfect two-qubit gates
is a major bottleneck for achieving scalable quantum information processors.
Here, we propose a generalizable and extensible scheme for a two-qubit coupler
switch that controls the qubit-qubit coupling by modulating the coupler
frequency. Two-qubit gate operations can be implemented by operating the
coupler in the dispersive regime, which is non-invasive to the qubit states. We
investigate the performance of the scheme by simulating a universal two-qubit
gate on a superconducting quantum circuit, and find that errors from known
parasitic effects are strongly suppressed. The scheme is compatible with
existing high-coherence hardware, thereby promising a higher gate fidelity with
current technologies
The orbital characteristics of debris particle rings as derived from IDE observations of multiple orbit intersections with LDEF
During the first 346 days of the LDEF's almost 6 year stay in space, the metal oxide silicon detectors of the Interplanetary Dust Experiment (IDE) recorded over 15,000 impacts, most of which were separated in time by integer multiples of the LDEF orbital period (called multiple orbit event sequences, or MOES). Simple celestial mechanics provides ample reason to expect that a good deal of information about the orbits of the impacting debris particles can be extracted from these MOES, and so a procedure, based on the work of Greenberg, has been developed and applied to one of these events, the so-called 'May swarm'. This technique, the 'Method of Differential Precession,' allows for the determination of the geometrical elements of a particle orbit from the change in the position of the impact point with time. The application of this approach to the May swarm gave the following orbital elements for the orbit of the particles striking LDEF during this MOES: a = 6746.5 km; 0.0165 less than e less than 0.025; i = 66.55 deg; Omega(sub 0) = 179.0 deg plus or minus 0.2 deg; omega = 178.1 deg plus or minus 0.2 deg
Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula
Background
Knowledge of the genetic basis of plant resistance to necrotrophic pathogens is incomplete and has been characterised in relatively few pathosystems. In this study, the cytology and genetics of resistance to spring black stem and leaf spot caused by Phoma medicaginis, an economically important necrotrophic pathogen of Medicago spp., was examined in the model legume M. truncatula.
Results
Macroscopically, the resistant response of accession SA27063 was characterised by small, hypersensitive-like spots following inoculation while the susceptible interaction with accessions A17 and SA3054 showed necrotic lesions and spreading chlorosis. No unique cytological differences were observed during early infection (<48 h) between the resistant and susceptible genotypes, except pathogen growth was restricted to one or a few host cells in SA27063. In both interactions reactive oxygen intermediates and phenolic compounds were produced, and cell death occurred. Two F2 populations segregating for resistance to spring black stem and leaf spot were established between SA27063 and the two susceptible accessions, A17 and SA3054. The cross between SA27063 and A17 represented a wider cross than between SA27063 and SA3054, as evidenced by higher genetic polymorphism, reduced fertility and aberrant phenotypes of F2 progeny. In the SA27063 × A17 F2 population a highly significant quantitative trait locus (QTL, LOD = 7.37; P < 0.00001) named resistance to the necrotroph P homa m edicaginis one (rnpm1) genetically mapped to the top arm of linkage group 4 (LG4). rnpm1 explained 33.6% of the phenotypic variance in the population's response to infection depicted on a 1–5 scale and was tightly linked to marker AW256637. A second highly significant QTL (LOD = 6.77; P < 0.00001), rnpm2, was located on the lower arm of LG8 in the SA27063 × SA3054 map. rnpm2 explained 29.6% of the phenotypic variance and was fine mapped to a 0.8 cM interval between markers h2_16a6a and h2_21h11d. rnpm1 is tightly linked to a cluster of Toll/Interleukin1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NBS-LRR) genes and disease resistance protein-like genes, while no resistance gene analogues (RGAs) are apparent in the genomic sequence of the reference accession A17 at the rnpm2 locus.
Conclusion
The induction of defence responses and cell death in the susceptible interaction following infection by P. medicaginis suggested this pathogen is not negatively affected by these responses and may promote them. A QTL for resistance was revealed in each of two populations derived from crosses between a resistant accession and two different susceptible accessions. Both loci are recessive in nature, and the simplest explanation for the existence of two separate QTLs is the occurrence of host genotype-specific susceptibility loci that may interact with undetermined P. medicaginis virulence factors
Pricing and hedging of Asian options: Quasi-explicit solutions via Malliavin calculus
We use Malliavin calculus and the Clark-Ocone formula to derive the hedging strategy of an arithmetic Asian Call option in general terms. Furthermore we derive an expression for the density of the integral over time of a geometric Brownian motion, which allows us to express hedging strategy and price of the Asian option as an analytic expression. Numerical computations which are based on this expression are provided
- …