33 research outputs found

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2—Implications for their role in disease, especially cancer

    Full text link

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H(2)O (2)-Implications for their role in disease, especially cancer

    Get PDF
    Mammalian NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial inner membrane catalyzes the oxidation of NADH in the matrix. Excess NADH reduces nine of the ten prosthetic groups of the enzyme in bovine-heart submitochondrial particles with a rate of at least 3,300 s(-1). This results in an overall NADH→O(2) rate of ca. 150 s(-1). It has long been known that the bovine enzyme also has a specific reaction site for NADPH. At neutral pH excess NADPH reduces only three to four of the prosthetic groups in Complex I with a rate of 40 s(-1) at 22 °C. The reducing equivalents remain essentially locked in the enzyme because the overall NADPH→O(2) rate (1.4 s(-1)) is negligible. The physiological significance of the reaction with NADPH is still unclear. A number of recent developments has revived our thinking about this enigma. We hypothesize that Complex I and the Δp-driven nicotinamide nucleotide transhydrogenase (Nnt) co-operate in an energy-dependent attenuation of the hydrogen-peroxide generation by Complex I. This co-operation is thought to be mediated by the NADPH/NADP(+) ratio in the vicinity of the NADPH site of Complex I. It is proposed that the specific H(2)O(2) production by Complex I, and the attenuation of it, is of importance for apoptosis, autophagy and the survival mechanism of a number of cancers. Verification of this hypothesis may contribute to a better understanding of the regulation of these processe

    The biosynthetic routes for carbon monoxide and cyanide in the Ni-Fe active site of hydrogenases are different

    No full text
    The incorporation of carbon into the carbon monoxide and cyanide ligands of [NiFe]-hydrogenases has been investigated by using (13)C labelling in infrared studies of the Allochromatium vinosum enzyme and by (14)C labelling experiments with overproduced Hyp proteins from Escherichia coli. The results suggest that the biosynthetic routes of the carbon monoxide and cyanide ligands in [NiFe]-hydrogenases are different

    Reactions of H 2

    No full text
    corecore