90 research outputs found

    Do oxytocin neurones affect feeding?

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-06-02, rev-recd 2021-07-30, accepted 2021-08-19, pub-electronic 2021-09-08Article version: VoRPublication status: PublishedFunder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100000265; Grant(s): MR/P024017/1Abstract: There has been a long history of research on the effects of oxytocin on feeding behaviour. The classic‐held view is that the neurohormone is anorexigenic at least in rodents, although the data for humans are not so clear cut. Likewise, a physiological role for oxytocin is disputed. Thus, although pharmacological, anatomical and physiological data suggest oxytocin may have a function in satiety signalling, this view is not supported by the latest research using the genetic recording and manipulation of oxytocin neurones. Here, we avoid a discussion of the pharmacological effects of oxytocin and examine evidence, from both sides of the argument, concerning whether the endogenous oxytocin system has a role in the regulation of normal feeding

    Sequential Exposure to Obesogenic Factors in Females Rats: From Physiological Changes to Lipid Metabolism in Liver and Mesenteric Adipose Tissue

    Get PDF
    During their lifetime, females are subjected to different nutritional and hormonal factors that could increase the risk of obesity and associated comorbidities. From early postnatal periods until the postmenopausal phase, exposure to over nutrition, high-energy diet and oestrogen deficiency, are considered as significant obesity risk factors in women. In this study, we assessed how key transitional life events and exposure to different nutrition influence energy homeostasis in a rat model. Specifically, we assessed the sequential exposure to postnatal over nutrition, high-fat diet (HFD) after weaning, followed later by ovariectomy (OVX; as a model of menopause). Each obesity risk factor increased significantly body weight (BW) and adiposity, with additive effects after sequential exposure. Increased energy intake in both HFD and/or OVX groups, and decreased locomotor activity and energy expenditure after OVX can explain these metabolic changes. Our study also documents decreased lipogenic pathway in mesenteric adipose tissue after HFD and/or OVX, independent of previous postnatal programming, yet only HFD evoked this effect in liver. In addition, we report an increase in the expression of the hepatic PEPCK depending on previous metabolic status. Overall, our results identify the impact of different risk factors, which will help in understanding the development of obesity in females

    Anorectic and aversive effects of GLP-1 receptor agonism are mediated by brainstem cholecystokinin neurons, and modulated by GIP receptor activation

    Get PDF
    This work was funded by an MRC Career Development Award (MR/ P009824/1 and MR/P009824/2) to GD’A, as well as an MRC grant to SML/GD’A (MR/T032669/1), a BBSRC grant to SML (BB/M001067/1), and an additional direct contribution from Eli Lilly. D.J.H. was sup- ported by MRC (MR/N00275X/1 and MR/S025618/1), Diabetes UK (17/ 0005681), and the European Research Council (ERC) under the Eu- ropean Union’s Horizon 2020 research and innovation programme (Starting Grant 715884 to D.J.H.). AC was supported for part of this project by a travel grant from the Italian Society of Pharmacology and a fellowship from the Veronesi Foundation (Italy).Peer reviewedPublisher PD

    Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity

    Get PDF
    The close correspondence between energy intake and expenditure over prolonged time periods, coupled with an apparent protection of the level of body adiposity in the face of perturbations of energy balance, has led to the idea that body fatness is regulated via mechanisms that control intake and energy expenditure. Two models have dominated the discussion of how this regulation might take place. The set point model is rooted in physiology, genetics and molecular biology, and suggests that there is an active feedback mechanism linking adipose tissue (stored energy) to intake and expenditure via a set point, presumably encoded in the brain. This model is consistent with many of the biological aspects of energy balance, but struggles to explain the many significant environmental and social influences on obesity, food intake and physical activity. More importantly, the set point model does not effectively explain the ‘obesity epidemic' - the large increase in body weight and adiposity of a large proportion of individuals in many countries since the 1980s. An alternative model, called the settling point model, is based on the idea that there is passive feedback between the size of the body stores and aspects of expenditure. This model accommodates many of the social and environmental characteristics of energy balance, but struggles to explain some of the biological and genetic aspects. The shortcomings of these two models reflect their failure to address the gene-by-environment interactions that dominate the regulation of body weight. We discuss two additional models - the general intake model and the dual intervention point model - that address this issue and might offer better ways to understand how body fatness is controlled

    Anti-tumour activity of bisphosphonates in preclinical models of breast cancer

    Get PDF
    There is increasing evidence of anti-tumour effects of bisphosphonates from pre-clinical studies, supporting a role for these drugs beyond their traditional use in treatment of cancer-induced bone disease. A range of model systems have been used to investigate the effects of different bisphosphonates on tumour growth, both in bone and at peripheral sites. Most of these studies conclude that bisphosphonates cause a reduction in tumour burden, but that early intervention and the use of high and/or repeated dosing is required. Successful eradication of cancer may only be achievable by targeting the tumour cells directly whilst also modifying the tumour microenvironment. In line with this, bisphosphonates are demonstrated to be particularly effective at reducing breast tumour growth when used in combination with agents that directly target cancer cells. Recent studies have shown that the effects of bisphosphonates on breast tumours are not limited to bone, and that prolonged anti-tumour effects may be achieved following their inclusion in combination therapy. This has opened the field to a new strand of bisphosphonate research, focussed on elucidating their effects on cells and components of the local, regional and distal tumour microenvironment. This review highlights the recent developments in relation to proposed anti-tumour effects of bisphosphonates reported from in vitro and in vivo models, and summarises the data from key breast cancer studies. Evidence for effects on different processes and cell types involved in cancer development and progression is discussed, and the main outstanding issues identified
    corecore