171 research outputs found
Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions
Episcopic imaging using techniques such as High Resolution Episcopic Microscopy (HREM) and its variants, allows biological samples to be visualized in three dimensions over a large field of view. Quantitative analysis of episcopic image data is undertaken using a range of methods. In this systematic review, we look at trends in quantitative analysis of episcopic images and discuss avenues for further research. Papers published between 2011 and 2022 were analyzed for details about quantitative analysis approaches, methods of image annotation and choice of image processing software. It is shown that quantitative processing is becoming more common in episcopic microscopy and that manual annotation is the predominant method of image analysis. Our meta-analysis highlights where tools and methods require further development in this field, and we discuss what this means for the future of quantitative episcopic imaging, as well as how annotation and quantification may be automated and standardized across the field
Characterising risk of non-steroidal-anti-inflammatory drug related acute kidney injury: a retrospective cohort study
BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for pain and inflammation. NSAID complications include acute kidney injury (AKI), causing burden to patients and health services through increased morbidity, mortality, and hospital admissions. AIM: To measure the extent of NSAID prescribing in an adult population, the degree to which patients with potential higher risk of AKI were exposed to NSAIDs, and to quantify their risk of AKI. DESIGN & SETTING: Retrospective 2-year closed-cohort study. METHOD: A retrospective cohort of adults was identified from a pseudonymised electronic primary care database in Hampshire, UK. The cohort had clinical information, prescribing data, and complete GP- and hospital-ordered biochemistry data. NSAID exposure (minimum one prescription in a 2-month period) was categorised as never, intermittent, and continuous, and first AKI using the national AKI e-alert algorithm. Descriptive statistics and logistic regression were used to explore NSAID prescribing patterns and AKI risk. RESULTS: The baseline population was 702 265. NSAID prescription fell from 19 364 (2.8%) to 16 251 (2.4%) over 2 years. NSAID prescribing was positively associated with older age, female sex, greater socioeconomic deprivation, and certain comorbidities (diabetes, hypertension, osteoarthritis, and rheumatoid arthritis) and negatively with cardiovascular disease (CVD) and heart failure. Among those prescribed NSAIDs, AKI was associated with older age, greater deprivation, chronic kidney disease (CKD), CVD, heart failure, diabetes, and hypertension. CONCLUSION: Despite generally good prescribing practice, NSAID prescribing was identified in some people at higher risk of AKI (for example, patients with CKD and older) for whom medication review and NSAID deprescribing should be considered
Multifluorescence High-Resolution Episcopic Microscopy for 3D Imaging of Adult Murine Organs
3D microscopy of large biological samples (>0.5 cm3) is transforming biological research. Many existing techniques require trade‐offs between image resolution, sample size, and method complexity. A simple robust instrument with the potential to conduct large‐volume 3D imaging currently exists in the form of the optical high‐resolution episcopic microscopy (HREM). However, the development of the instrument to date is limited to single‐fluorescent wavelength imaging with nonspecific eosin staining. Herein, developments to realize the potential of the HREM to become multifluorescent high‐resolution episcopic microscopy (MF‐HREM) are presented. MF‐HREM is a serial‐sectioning and block‐facing wide‐field fluorescence imaging technique, which does not require tissue clearing or optical sectioning. Multiple developments are detailed in sample preparation and image postprocessing to enable multiple specific stains in large samples and show how these enable segmentation and quantification of the data. The application of MF‐HREM is demonstrated in a variety of biological contexts: 3D imaging of whole tumor vascular networks and tumor cell invasion in xenograft tumors up to 7.5 mm3 at resolutions of 2.75 μm, quantification of glomeruli volume in the adult mouse kidney, and quantification of vascular networks and white‐matter track orientation in adult mouse brain
A study of general practitioners' perspectives on electronic medical records systems in NHS Scotland
<b>Background</b> Primary care doctors in NHSScotland have been using electronic medical records within their practices routinely for many years. The Scottish Health Executive eHealth strategy (2008-2011) has recently brought radical changes to the primary care computing landscape in Scotland: an information system (GPASS) which was provided free-of-charge by NHSScotland to a majority of GP practices has now been replaced by systems provided by two approved commercial providers. The transition to new electronic medical records had to be completed nationally across all health-boards by March 2012. <p></p><b>
Methods</b> We carried out 25 in-depth semi-structured interviews with primary care doctors to elucidate GPs' perspectives on their practice information systems and collect more general information on management processes in the patient surgical pathway in NHSScotland. We undertook a thematic analysis of interviewees' responses, using Normalisation Process Theory as the underpinning conceptual framework. <p></p>
<b>Results</b> The majority of GPs' interviewed considered that electronic medical records are an integral and essential element of their work during the consultation, playing a key role in facilitating integrated and continuity of care for patients and making clinical information more accessible. However, GPs expressed a number of reservations about various system functionalities - for example: in relation to usability, system navigation and information visualisation.
<b>Conclusion </b>Our study highlights that while electronic information systems are perceived as having important benefits, there remains substantial scope to improve GPs' interaction and overall satisfaction with these systems. Iterative user-centred improvements combined with additional training in the use of technology would promote an increased understanding, familiarity and command of the range of functionalities of electronic medical records among primary care doctors
Emergent mechanical control of vascular morphogenesis
Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization. Tissue stiffness increases during vascular morphogenesis resulting from emergent interactions between endothelial cells, fibroblasts, and ECM and correlates with enhanced vascular function. Contractile cellular forces are key to emergent tissue stiffening and synergize with ECM mechanical properties to modulate the mechanics of vascularization. Emergent tissue stiffening and vascular function rely on mechanotransduction signaling within fibroblasts, mediated by YAP1. Mouse embryos lacking YAP1 in fibroblasts exhibit both reduced tissue stiffness and develop lethal vascular defects. Translating our findings through biology-inspired vascular tissue engineering approaches will have substantial implications in regenerative medicine
A comparative study of the effectiveness of vibration and acoustic emission in diagnosing a defective bearing in a planetry gearbox
Whilst vibration analysis of planetary gearbox faults is relatively well established, the application of Acoustic Emission (AE) to this field is still in its infancy. For planetary-type gearboxes it is more challenging to diagnose bearing faults due to the dynamically changing transmission paths which contribute to masking the vibration signature of interest.
The present study is aimed to reduce the effect of background noise whilst extracting the fault feature from AE and vibration signatures. This has been achieved through developing of internal AE sensor for helicopter transmission system. In addition, series of signal processing procedure has been developed to improved detection of incipient damage. Three signal processing techniques including an adaptive filter, spectral kurtosis and envelope analysis, were applied to AE and vibration data acquired from a simplified planetary gearbox test rig with a seeded bearing defect. The results show that AE identified the defect earlier than vibration analysis irrespective of the tortuous transmission pat
- …