19 research outputs found

    Systems Modeling Identifies Divergent Receptor Tyrosine Kinase Reprogramming to MAPK Pathway Inhibition

    Get PDF
    Introduction - Targeted cancer therapeutics have demonstrated more limited clinical efficacy than anticipated, due to both intrinsic and acquired drug resistance. Underlying mechanisms have been largely attributed to genetic changes, but a substantial proportion of resistance observations remain unexplained by genomic properties. Emerging evidence shows that receptor tyrosine kinase (RTK) reprogramming is a major alternative process causing targeted drug resistance, separate from genetic alterations. Hence, the contributions of mechanisms leading to this process need to be more rigorously assessed.National Institutes of Health (U.S.) (Grant R01-CA96504)National Institutes of Health (U.S.) (Grant U54-CA217377)United States. Army Research Office (grant W911NF-09-0001

    Bioimage informatics for understanding the effects of chemotherapy on cellular signaling, structure, and function

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2017.Cataloged from PDF version of thesis.Includes bibliographical references (pages 173-197).Chemotherapy is widely used in the treatment of solid tumors, but its effects are often associated with cancer relapse, metastasis, and drug resistance. The biological mechanisms that drive the structural and functional changes in cancer cells associated with these features of disease progression remain poorly understood. Consequently, quantitative characterization of molecular signaling pathways and changes in cancer cell phenotypes induced by chemotherapy through the use of in vitro model systems would expand our understanding of drug mechanisms and provide for putative strategies to counteract drug-induced cancer progression. Toward this end, I develop bioimage informatics tools to characterize changes in signaling, structure, and function of cancer cells from fluorescence microscopy data. I first present a generally-applicable probabilistic time-series modeling framework to classify cell shape dynamics. Times-series models draw quantitative comparisons in cell shape dynamics that are used to distinguish and interpret cellular responses to diverse drug perturbations. Next, I investigate the effects of doxorubicin, a DNA-damaging chemotherapeutic drug, on breast cancer cell signaling and phenotype. Bioinformatics analyses of phosphoproteomics data are first used to infer biological processes downstream of DNA damage response signaling networks altered by doxorubicin treatment. These analyses reveal changes in phosphoproteins associated with the actomyosin cytoskeleton and focal adhesions. Live-cell imaging of cell morphology, motility, and apoptosis dynamics reveals a link between doxorubicin-induced cytoskeletal signaling and morphological elongation, directional migration, and enhanced chemo-tolerance. These findings imply that sub-maximal tumor killing can exacerbate disease progression through adaptive resistance to primary chemotherapy treatment through DNA damage response-regulated cytoskeletal signaling. Finally, I combine the results of the phosphoproteomic analysis with phenotypic profiling to characterize doxorubicin-induced changes in actomyosin signaling that affect cancer cell shape and survival. I additionally describe a generally-applicable multiplexed fluorescence imaging framework that uses diffusible nucleic acid probes to detect nearly a dozen subcellular protein targets within the same biological sample. Taken together, these methodologies reveal previously-unappreciated effects of chemotherapy on breast cancer signaling and phenotype, and demonstrate the value of combining bioinformatics analyses of -omics data with quantitative fluorescence microscopy as a general strategy in biological mechanism discovery.by Simon Gordonov.Ph. D

    Time series modeling of live-cell shape dynamics for image-based phenotypic profiling

    No full text
    Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that are not accessible to fixed-cell imaging. As the use of live-cell imaging continues to increase, new computational procedures are needed to characterize and classify the temporal dynamics of individual cells. For this purpose, here we present the general experimental-computational framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell Responses) to characterize phenotypic cellular responses from time series imaging datasets. Hidden Markov modeling (HMM) is used to infer and annotate morphological state and state-switching properties from image-derived cell shape measurements. Time series modeling is performed on each cell individually, making the approach broadly useful for analyzing asynchronous cell populations. Two-color fluorescent cells simultaneously expressing actin and nuclear reporters enabled us to profile temporal changes in cell shape following pharmacological inhibition of cytoskeleton–regulatory signaling pathways. Results are compared with existing approaches conventionally applied to fixed-cell imaging datasets, and indicate that time series modeling captures heterogeneous dynamic cellular responses that can improve drug classification and offer additional important insight into mechanisms of drug action.National Institute of General Medical Sciences (U.S.) (Grant GM69668)Virginia and Daniel K. Ludwig Graduate FellowshipNational Science Foundation (U.S.) Physics of Living Systems (Grant 1305537

    Apoptotic Bodies Elicit Gas6-Mediated Migration of AXL-Expressing Tumor Cells

    No full text
    Metastases are a major cause of cancer mortality. AXL, a receptor tyrosine kinase aberrantly expressed in many tumors, is a potent oncogenic driver of metastatic cell motility and has been identified as broadly relevant in cancer drug resistance. Despite its frequent association with changes in cancer phenotypes, the precise mechanism leading to AXL activation is incompletely understood. In addition to its ligand growth arrest specific-6 (Gas6), activation of AXL requires the lipid moiety phosphatidylserine (PS). Phosphatidylserine is only available to mediate AXL activation when it is externalized on cell membranes, an event that occurs during certain physiologic processes such as apoptosis. Here, it is reported that exposure of cancer cells to phosphatidylserine-containing vesicles, including synthetic liposomes and apoptotic bodies, contributes to enhanced migration of tumor cells via a PS-Gas6-AXL signaling axis. These findings suggest that anticancer treatments that induce fractional cell killing enhance the motility of surviving cells in AXL-expressing tumors, which may explain the widespread role of AXL in limiting therapeutic efficacy. Implications: This study demonstrates that motility behavior of AXL-expressing tumor cells can be elicited by Gas6-bearing apoptotic bodies generated from tumor treatment with therapeutics that produce killing of a portion of the tumor cells present but not all, hence generating potentially problematic invasive and metastatic behavior of the surviving tumor cells

    Apoptotic Bodies Elicit Gas6-Mediated Migration of AXL-Expressing Tumor Cells.

    No full text
    Metastases are a major cause of cancer mortality. AXL, a receptor tyrosine kinase aberrantly expressed in many tumors, is a potent oncogenic driver of metastatic cell motility and has been identified as broadly relevant in cancer drug resistance. Despite its frequent association with changes in cancer phenotypes, the precise mechanism leading to AXL activation is incompletely understood. In addition to its ligand growth arrest specific-6 (Gas6), activation of AXL requires the lipid moiety phosphatidylserine (PS). Phosphatidylserine is only available to mediate AXL activation when it is externalized on cell membranes, an event that occurs during certain physiologic processes such as apoptosis. Here, it is reported that exposure of cancer cells to phosphatidylserine-containing vesicles, including synthetic liposomes and apoptotic bodies, contributes to enhanced migration of tumor cells via a PS-Gas6-AXL signaling axis. These findings suggest that anticancer treatments that induce fractional cell killing enhance the motility of surviving cells in AXL-expressing tumors, which may explain the widespread role of AXL in limiting therapeutic efficacy.Implications: This study demonstrates that motility behavior of AXL-expressing tumor cells can be elicited by Gas6-bearing apoptotic bodies generated from tumor treatment with therapeutics that produce killing of a portion of the tumor cells present but not all, hence generating potentially problematic invasive and metastatic behavior of the surviving tumor cells. Mol Cancer Res; 15(12); 1656-66. ©2017 AACR
    corecore