520 research outputs found

    Musculoskeletal models in highly dynamic motion: effects of model parameters and mental stress

    Get PDF
    The analysis and understanding of highly dynamic movements is a fundamental part of biomechanics. Since sports injuries often involve the lower extremities and muscles, musculoskeletal models can help to prevent them. These models allow the calculation of ground and joint reaction forces as well as muscle forces and activities for individual muscle strands. One goal of this work is to use musculoskeletal models to investigate the influence of mental stress on lower extremity loading. Moreover, the models themselves are evaluated for highly dynamic movements and practical recommendations for action will be derived. For this purpose, fast movements of youth competitive and amateur athletes will be recorded using different measurement systems. Subsequently, the models calculate the target parameters using inverse dynamics. Furthermore, measured and calculated muscle activities of the lower extremities are compared and artificial balancing forces (residuals) in the models are analyzed and minimization approaches are presented. The investigation of muscle and joint loading under mental stress has shown that the response to mental stress is highly individual. Athletes may experience a significant increase in muscle and knee forces with a simultaneous decrease in performance. The comparison of measured and calculated muscle activity proved the reliability of the models also for highly dynamic movements. With the frequently used default settings in the model and optical and inertial motion capture, the muscle activities in the model could be calculated reliably. The residual forces were highest, when the model transitioned from foot-ground contact to no contact and vice versa. By adjusting the settings of the kinematic filter and the ground reaction force prediction, the residuals were reduced by up to 54%. The analysis of musculoskeletal loading under mental stress has shown that the models can make a valuable contribution to the biomechanical analysis of highly dynamic movements. Subsequently, the models have also proven to be a reliable tool for the analysis of highly dynamic movements when the calculated parameters as well as the model-specific optimization options are reviewed. With this in mind, these models can contribute to further understand highly dynamic movements and prevent muscle injuries in athletes

    EFFECT OF MENTAL DEMAND ON KNEE FORCES IN PROFESSIONAL YOUTH SOCCER PLAYERS

    Get PDF
    Soccer is one of the most popular sports all around the world. It is an injurious type of sport with a focus on lower extremities and high psychological pressure during matches. The stressor is linked with injuries and an increased musculoskeletal loading. This study investigates the influence of cognitive stress on the load profile of the knee joint. Twelve professional youth soccer players performed highly dynamic runs with and without additional cognitive stress. The runs were analysed with a musculoskeletal simulation software. The data analysis shows no difference in knee joint reaction loading under additional mental stress compared to the baseline. Yet running times are significantly lower in the baseline. While there is no increase in the joint loads, the running times indicate an altered movement behaviour when the subjects are exposed to additional mental demand

    How to feed the squerall with RDF and other data nuts?

    Get PDF
    Advances in Data Management methods have resulted in a wide array of storage solutions having varying query capabilities and supporting different data formats. Traditionally, heterogeneous data was transformed off-line into a unique format and migrated to a unique data management system, before being uniformly queried. However, with the increasing amount of heterogeneous data sources, many of which are dynamic, modern applications prefer accessing directly the original fresh data. Addressing this requirement, we designed and developed Squerall, a software framework that enables the querying of original large and heterogeneous data on-the-fly without prior data transformation. Squerall is built from the ground up with extensibility in consideration, e.g., supporting more data sources. Here, we explain Squerall’s extensibility aspect and demonstrate step-by-step how to add support for RDF data, a new extension to the previously supported range of data sources

    Historical sociolinguistics: the field and its future

    Get PDF
    AbstractThis article introduces the newJournal of Historical Sociolinguisticsby situating it in the developing field of historical sociolinguistics. The landmark paper of Weinreich et al. (1968), which paid increased attention to extralinguistic factors in the explanation of language variation and change, served as an important basis for the gradual development and expansion of historical sociolinguistics as a separate (sub)field of inquiry, notably since the influential work of Romaine (1982). This article traces the development of the field of historical sociolinguistics and considers some of its basic principles and assumptions, including the uniformitarian principle and the so-called bad data problem. Also, an overview is provided of some of the directions recent research has taken, both in terms of the different types of data used, and in terms of important approaches, themes and topics that are relevant to many studies within the field. The article concludes with considerations of the necessarily multidisciplinary nature of historical sociolinguistics, and invites authors from various research traditions to submit original research articles to the journal, and thus help to further the development of the fascinating field of historical sociolinguistics.</jats:p

    Epigenetic regulation of gene expression in response to a changing environment in CHO cell batch culture

    Get PDF
    Chinese Hamster Ovary (CHO) cells have been the workhorse for industrial production of recombinant therapeutic proteins since 1987. Variations in cellular environment and phenotypes that occur throughout the bioprocess can bring about significant changes in productivity and quality of recombinant proteins. This can potentially lead to rejection of the production lot. Hence, there is interest in an in-depth understanding of cell-line behavior and control to achieve more predictable and reliable process performance. Biological systems undergo dynamic changes over time, where individual genes are turned “on”, “off” or “paused” as and when required. So far, there is very little information available for CHO cell lines, that elucidates the effect of dynamic epigenetic regulation on temporal expression of genes in response to altered substrate availability and culture conditions. While DNA methylation levels around TSS induce either expression or silencing of genes, transcriptional regulation is primarily considered to be an interplay of transcription factors and chromatin modifiers. On top of these, there is a rapid increase in indications that connects phase-specific long non-coding RNAs (lncRNAs) in transcriptional and post-transcriptional gene regulation. Unfortunately, the mechanism of interaction of these lncRNAs with coding genes have not been studied extensively. In this study, the gene transcription dynamics throughout a batch culture of CHO cells was examined by analyzing expression profiles and histone modifications in regular 12-24 hour intervals. Chromatin states and differential methylation profiles were used to understand the role of epigenetic modifiers in the regulation of gene expression. A good correlation between expression level and absence of DNA-methylation in the promoter regions was observed. Genes having all essential active chromatin marks - specific for promoter activity, genic enhancer and active transcription, also showed significantly high positive correlation between the changes in expression levels and histone marks. Both transcription and chromatin modifications during different growth phases were found to be highly dynamic. Clusters of genes showing similar trends of expression depict gradual and continuous adaptation to the changing substrate concentrations. Less narrowly spaced temporal analyses would have prevented detection of critical regulators involved in transient changes during the batch culture. Here, we also report a plausible mode of interaction of lncRNAs with the coding genes mediated by RNA-DNA-DNA triplex formations. Based on the identified interactions, we could predict possible gene targets and the target sites for the expressed lncRNAs and show high level of correlation of expression levels between interacting pairs. To the best of our knowledge this is the first and most comprehensive report of genome wide transcriptional regulation by epigenetic modifiers for CHO. Please click Additional Files below to see the full abstract

    The Effects of Atmospheric Dispersion on High-Resolution Solar Spectroscopy

    Full text link
    We investigate the effects of atmospheric dispersion on observations of the Sun at the ever-higher spatial resolutions afforded by increased apertures and improved techniques. The problems induced by atmospheric refraction are particularly significant for solar physics because the Sun is often best observed at low elevations, and the effect of the image displacement is not merely a loss of efficiency, but the mixing of information originating from different points on the solar surface. We calculate the magnitude of the atmospheric dispersion for the Sun during the year and examine the problems produced by this dispersion in both spectrographic and filter observations. We describe an observing technique for scanning spectrograph observations that minimizes the effects of the atmospheric dispersion while maintaining a regular scanning geometry. Such an approach could be useful for the new class of high-resolution solar spectrographs, such as SPINOR, POLIS, TRIPPEL, and ViSP

    Nucleon-nucleon elastic scattering analysis to 2.5 GeV

    Full text link
    A partial-wave analysis of NN elastic scattering data has been completed. This analysis covers an expanded energy range, from threshold to a laboratory kinetic energy of 2.5 GeV, in order to include recent elastic pp scattering data from the EDDA collaboration. The results of both single-energy and energy-dependent analyses are described.Comment: 23 pages of text. Postscript files for the figures are available from ftp://clsaid.phys.vt.edu/pub/said/n

    Simulating nutrient release from parental carcasses increases the growth, biomass and genetic diversity of juvenile Atlantic salmon

    Get PDF
    The net transport of nutrients by migratory fish from oceans to inland spawning areas has decreased due to population declines and migration barriers. Restoration of nutrients to increasingly oligotrophic upland streams (that were historically salmon spawning areas) have shown short‐term benefits for juvenile salmon, but the longer term consequences are little known. Here we simulated the deposition of a small number of adult Atlantic salmon Salmo salar carcasses at the end of the spawning period in five Scottish upland streams (‘high parental nutrient’ treatment), while leaving five reference streams without carcasses (‘low parental nutrient’ treatment). All streams received exactly the same number of salmon eggs (n = 3,000) drawn in equal number from the same 30 wild‐origin families, thereby controlling for initial egg density and genetic composition. We then monitored the resulting juvenile salmon and their macroinvertebrate prey, repeating the carcass addition treatment in the next spawning season. Macroinvertebrate biomass and abundance were five times higher in the high parental nutrient streams, even 1 year after the carcass addition, and led to faster growth of juvenile salmon over the next 2 years (but with no change in population density). This faster growth led to more fish exceeding the size threshold that would trigger emigration to sea at 2 rather than 3 years of age. There was also higher genetic diversity among surviving salmon in high parental nutrient streams; genotyping showed that these effects were not due to immigration but to differential survival. Synthesis and applications. This 2‐year field experiment shows that adding nutrients that simulate the presence of small numbers of adult salmon carcasses can have long‐term effects on the growth rate of juvenile salmon, likely increasing the number that will migrate to sea early and also increasing their genetic diversity. However, the feasibility of adding nutrients to spawning streams as a management tool to boost salmon populations will depend on whether the benefits at this stage are maintained over the entire life cycle
    • 

    corecore