952 research outputs found
Construction of -strong Feller Processes via Dirichlet Forms and Applications to Elliptic Diffusions
We provide a general construction scheme for -strong Feller
processes on locally compact separable metric spaces. Starting from a regular
Dirichlet form and specified regularity assumptions, we construct an associated
semigroup and resolvents of kernels having the -strong Feller
property. They allow us to construct a process which solves the corresponding
martingale problem for all starting points from a known set, namely the set
where the regularity assumptions hold. We apply this result to construct
elliptic diffusions having locally Lipschitz matrix coefficients and singular
drifts on general open sets with absorption at the boundary. In this
application elliptic regularity results imply the desired regularity
assumptions
Flavor in Minimal Conformal Technicolor
We construct a complete, realistic, and natural UV completion of minimal
conformal technicolor that explains the origin of quark and lepton masses and
mixing angles. As in "bosonic technicolor", we embed conformal technicolor in a
supersymmetric theory, with supersymmetry broken at a high scale. The exchange
of heavy scalar doublets generates higher-dimension interactions between
technifermions and quarks and leptons that give rise to quark and lepton masses
at the TeV scale. Obtaining a sufficiently large top quark mass requires strong
dynamics at the supersymmetry breaking scale in both the top and technicolor
sectors. This is natural if the theory above the supersymmetry breaking also
has strong conformal dynamics. We present two models in which the strong top
dynamics is realized in different ways. In both models, constraints from
flavor-changing effects can be easily satisfied. The effective theory below the
supersymmetry breaking scale is minimal conformal technicolor with an
additional light technicolor gaugino. We argue that this light gaugino is a
general consequence of conformal technicolor embedded into a supersymmetric
theory. If the gaugino has mass below the TeV scale it will give rise to an
additional pseudo Nambu-Goldstone boson that is observable at the LHC.Comment: 37 pages; references adde
Minimal Conformal Technicolor and Precision Electroweak Tests
We study the minimal model of conformal technicolor, an SU(2) gauge theory
near a strongly coupled conformal fixed point, with conformal symmetry softly
broken by technifermion mass terms. Conformal symmetry breaking triggers chiral
symmetry breaking in the pattern SU(4) -> Sp(4), which gives rise to a
pseudo-Nambu-Goldstone boson that can act as a composite Higgs boson. The top
quark is elementary, and the top and electroweak gauge loop contributions to
the Higgs mass are cut off entirely by Higgs compositeness. In particular, the
model requires no top partners and no "little Higgs" mechanism. A nontrivial
vacuum alignment results from the interplay of the top loop and technifermion
mass terms. The composite Higgs mass is completely determined by the top loop,
in the sense that m_h/m_t is independent of the vacuum alignment and is
computable by a strong-coupling calculation. There is an additional composite
pseudoscalar A with mass larger than m_h and suppressed direct production at
LHC. We discuss the electroweak fit in this model in detail. Corrections to Z
-> bb and the T parameter from the top sector are suppressed by the enhanced
Sp(4) custodial symmetry. Even assuming that the strong contribution to the S
parameter is positive and usuppressed, a good electroweak fit can be obtained
for v/f ~ 0.25, where v and f are the electroweak and chiral symmetry breaking
scales respectively. This requires fine tuning at the 10% level.Comment: 34 pages, 4 figures; v2: updated precision electroweak fi
Sprint interval and sprint continuous training increases circulating CD34+ cells and cardio-respiratory fitness in young healthy women
The improvement of vascular health in the exercising limb can be attained by sprint interval training (SIT).
However, the effects on systemic vascular function and on circulating angiogenic cells (CACs) which may contribute to endothelial repair have not been investigated. Additionally, a comparison between SIT and sprint continuous training (SCT) which is less time committing has not been made
Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago
Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world
Quantum Computing
Quantum mechanics---the theory describing the fundamental workings of
nature---is famously counterintuitive: it predicts that a particle can be in
two places at the same time, and that two remote particles can be inextricably
and instantaneously linked. These predictions have been the topic of intense
metaphysical debate ever since the theory's inception early last century.
However, supreme predictive power combined with direct experimental observation
of some of these unusual phenomena leave little doubt as to its fundamental
correctness. In fact, without quantum mechanics we could not explain the
workings of a laser, nor indeed how a fridge magnet operates. Over the last
several decades quantum information science has emerged to seek answers to the
question: can we gain some advantage by storing, transmitting and processing
information encoded in systems that exhibit these unique quantum properties?
Today it is understood that the answer is yes. Many research groups around the
world are working towards one of the most ambitious goals humankind has ever
embarked upon: a quantum computer that promises to exponentially improve
computational power for particular tasks. A number of physical systems,
spanning much of modern physics, are being developed for this task---ranging
from single particles of light to superconducting circuits---and it is not yet
clear which, if any, will ultimately prove successful. Here we describe the
latest developments for each of the leading approaches and explain what the
major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53
(4 March 2010). Published version is more up-to-date and has several
corrections, but is half the length with far fewer reference
A new, large-bodied omnivorous bat (Noctilionoidea: Mystacinidae) reveals lost morphological and ecological diversity since the Miocene in New Zealand
A new genus and species of fossil bat is described from New Zealand's only pre-Pleistocene Cenozoic terrestrial fauna, the early Miocene St Bathans Fauna of Central Otago, South Island. Bayesian total evidence phylogenetic analysis places this new Southern Hemisphere taxon among the burrowing bats (mystacinids) of New Zealand and Australia, although its lower dentition also resembles Africa's endemic sucker-footed bats (myzopodids). As the first new bat genus to be added to New Zealand's fauna in more than 150 years, it provides new insight into the original diversity of chiropterans in Australasia. It also underscores the significant decline in morphological diversity that has taken place in the highly distinctive, semi-terrestrial bat family Mystacinidae since the Miocene. This bat was relatively large, with an estimated body mass of ~40 g, and its dentition suggests it had an omnivorous diet. Its striking dental autapomorphies, including development of a large hypocone, signal a shift of diet compared with other mystacinids, and may provide evidence of an adaptive radiation in feeding strategy in this group of noctilionoid bats
Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins
Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa(-1) in the range of < 1 kPa, 90,657 kPa(-1) in the range of 1-10 kPa, and 30,214 kPa(-1) in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
- …