712 research outputs found
Detecting the Phi Meson with CLAS12
Analysis and detection of the phi(1020) vector meson from exclusive electroproduction decay into Kaons have been performed. Studying exclusive phi electroproduction is an ideal channel for quantifying the gluonic properties of the nucleon. This detection used the CEBAF Large Acceptance Spectrometer (CLAS12) at Thomas Jefferson National Accelerator Facility (JLab) with a 10.6 GeV longitudinally polarized electron beam and an unpolarized hydrogen target. Using the detected final state particles phase space, x_B, Q^2, W, and by developing specialized exclusivity cuts as well as several additional cuts, events containing the production of a phi(1020) meson were able to be extracted. Additionally, a unified wagon has been developed that uses these measurements and cuts to perform advanced real-time visualization of the data processing and eventually will be applied to detect and identify events that contain the phi vector meson across all applicable data-sets with CLAS12 at JLab
Secondary-Structure Design of Proteins by a Backbone Torsion Energy
We propose a new backbone-torsion-energy term in the force field for protein
systems. This torsion-energy term is represented by a double Fourier series in
two variables, the backbone dihedral angles phi and psi. It gives a natural
representation of the torsion energy in the Ramachandran space in the sense
that any two-dimensional energy surface periodic in both phi and psi can be
expanded by the double Fourier series. We can then easily control
secondary-structure-forming tendencies by modifying the torsion-energy surface.
For instance, we can increase/decrease the alpha-helix-forming-tendencies by
lowering/raising the torsion-energy surface in the alpha-helix region and
likewise increase/decrease the beta-sheet-forming tendencies by
lowering/raising the surface in the beta-sheet region in the Ramachandran
space. We applied our approach to AMBER parm94 and AMBER parm96 force fields
and demonstrated that our modifications of the torsion-energy terms resulted in
the expected changes of secondary-structure-forming-tendencies by performing
folding simulations of alpha-helical and beta-hairpin peptides.Comment: 13 pages, (Revtex4), 5 figure
Four small puzzles that Rosetta doesn't solve
A complete macromolecule modeling package must be able to solve the simplest
structure prediction problems. Despite recent successes in high resolution
structure modeling and design, the Rosetta software suite fares poorly on
deceptively small protein and RNA puzzles, some as small as four residues. To
illustrate these problems, this manuscript presents extensive Rosetta results
for four well-defined test cases: the 20-residue mini-protein Trp cage, an even
smaller disulfide-stabilized conotoxin, the reactive loop of a serine protease
inhibitor, and a UUCG RNA tetraloop. In contrast to previous Rosetta studies,
several lines of evidence indicate that conformational sampling is not the
major bottleneck in modeling these small systems. Instead, approximations and
omissions in the Rosetta all-atom energy function currently preclude
discriminating experimentally observed conformations from de novo models at
atomic resolution. These molecular "puzzles" should serve as useful model
systems for developers wishing to make foundational improvements to this
powerful modeling suite.Comment: Published in PLoS One as a manuscript for the RosettaCon 2010 Special
Collectio
Ultrafast Structural Dynamics of BlsA, a Photoreceptor from the Pathogenic Bacterium Acinetobacter baumannii
Acinetobacter baumannii is an important human pathogen that can form biofilms and persist under harsh environmental conditions. Biofilm formation and virulence are modulated by blue light, which is thought to be regulated by a BLUF protein, BlsA. To understand the molecular mechanism of light sensing, we have used steady-state and ultrafast vibrational spectroscopy to compare the photoactivation mechanism of BlsA to the BLUF photosensor AppA from Rhodobacter sphaeroides. Although similar photocycles are observed, vibrational data together with homology modeling identify significant differences in the β5 strand in BlsA caused by photoactivation, which are proposed to be directly linked to downstream signaling
Editorial: Special Issue on Contemporary Educational Technology and its Role to Manifest a New Tradition in Life-Long Learning
Editorial: Special Issue on The Motivational and Existential Basis of Learners and Educational Scenarios
- …
