285 research outputs found

    The endogenous caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria

    Get PDF
    Components of the death receptors-mediated pathways like caspase-8 have been identified in complexes at intracellular membranes to spatially restrict the processing of local targets. In this study, we report that the long isoform of the cellular FLICE-inhibitory protein (c-FLIPL), a well- known inhibitor of the extrinsic cell death initiator caspase-8, localizes at the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs). ER morphology was disrupted and ER Ca2+-release as well as ER-mitochondria tethering were decreased in c-FLIP-/- mouse embryonic fibroblasts (MEFs). Mechanistically, c-FLIP ablation resulted in enhanced basal caspase-8 activation and in caspase-mediated processing of the ER-shaping protein reticulon-4 (RTN4) that was corrected by re-introduction of c-FLIPL and caspase inhibition, resulting in the recovery of a normal ER morphology and ER-mitochondria juxtaposition. Thus, the caspase-8 inhibitor c-FLIPL emerges as a component of the MAMs signaling platforms, where caspases appear to regulate ER morphology and ER-mitochondria crosstalk by impinging on ER-shaping proteins like the RTN4

    DAMIA: a data mashup fabric for intranet applications

    Get PDF
    Damia is a lightweight enterprise data integration service where line of business users can create and catalog high value data feeds for consumption by situational applications. Damia is inspired by the Web 2.0 mashup phenomenon. It consists of (1) a browserbased user-interface that allows for the specification of data mashups as data flow graphs using a set of operators, (2) a server with an execution engine, as well as (3) APIs for searching, debugging, executing and managing mashups. Damia offers a framework and functionality for dynamic entity resolution, streaming and other higher value features particularly important in the enterprise domain. Damia is currently in perpetual beta in the IBM Intranet. In this demonstration, we showcase the creation and execution of several enterprise data mashups, thereby illustrating the architecture and features of the overall Damia system

    Insulin-like growth factor-I (IGF-I) and thioredoxin are differentially expressed along the reproductive tract of the ewe during the oestrous cycle and after ovariectomy

    Get PDF
    Insulin-like growth factor-I (IGF-I) and thioredoxin are regulated by gonadal steroids in the female reproductive tract of many species. Oestradiol regulates IGF-I and thioredoxin mRNA levels in the reproductive tract of prepubertal lambs. The physiological status (different endocrine environment) may affect the sensitivity of the reproductive tract to oestradiol and progesterone. We studied the effects of different endocrine milieus (late-follicular and luteal phases of the oestrous cycle, and ovariectomy before or after puberty) on the expression of IGF-I, thioredoxin, oestrogen receptor α (ERα) and progesterone receptor (PR) in sheep. The mRNA levels were determined by a solution hybridisation technique. In the uterus the levels of ERα, PR and thioredoxin mRNA were higher in the late-follicular phase group than in the other three groups, and IGF-I mRNA was high during both the late-follicular and the luteal phases. In the cervix only PR mRNA was significantly higher in the ewes in the late-follicular phase than in the other groups. In the oviducts the levels of thioredoxin and ERα mRNA were highest in the ovariectomised adult ewes, and thioredoxin mRNA was higher than the levels found in the ewes in the late-follicular phase. The IGF-I mRNA levels in the oviduct did not differ between any of the groups. The transcripts of IGF-I, thioredoxin, ERα and PR, varied according to the physiological status and also along the female reproductive tract, suggesting that the regulation of the mRNA levels of these factors by the steroid environment is tissue specific. Koncentrationen av insulin-like growth factor-I (IGF-I) och thioredoxin regleras hos många arter i honors reproduktionsorgan av könssteroider. Sålunda reglerar östradiol IGF-I och thioredoxin mRNA i reproduktionsorganen hos prepubertala lamm. Djurets fysiologiska status (dvs den endokrina miljön) kan påverka känsligheten hos reproduktionsorganen för östradiol och progesteron. Vi studerade effekterna av olika endokrina miljöer (sen follikelfas och lutealfas i östruscykeln, samt ovariektomi före och efter puberteten) på uttrycket av IGF-I, thioredoxin, östrogenreceptor α (ERα) och progesteronreceptorn (PR) hos får. Lösningshybridisering användes för att bestämma mRNA nivåerna. I livmodern var mRNA koncentrationen för ERα, PR och thioredoxin högre i sen follikelfas än i de andra tre grupperna och IGF-I mRNA nivån var hög både under sen follikelfas och i lutealfas. PR mRNA i cervix var signifikant högre hos tackorna under sen follikelfas än i de andra grupperna. I äggledarna var mRNA nivåerna av thioredoxin och ERα högst i de djur som ovariektomerats som vuxna, och thioredoxin mRNA var högre än hos tackorna under sen follikelfas. Det förelåg ingen skillnad vad gäller IGF-I mRNA nivåerna i äggledaren mellan någon av grupperna. IGF-I, thioredoxin, ERα och PR mRNA nivåerna varierade beroende på fysiologisk status och morfologisk lokalisation i reproduktionsorganen. Detta tyder på att steroidhormonernas reglering av dessa faktorers mRNA uttryck också är vävnadsspecifik

    GC Content Increased at CpG Flanking Positions of Fish Genes Compared with Sea Squirt Orthologs as a Mechanism for Reducing Impact of DNA Methylation

    Get PDF
    Background: Fractional DNA methylation in sea squirts evolved to global DNA methylation in fish. The impact of global DNA methylation is reflected by more CpG depletions and/or more A/T to G/C changes at CpG flanking positions due to context-dependent mutations of methylated CpG sites. Methods and Findings: In this report, we demonstrate that the sea squirt genes have undergone more CpG to TpG/CpA substitutions than the fish orthologs using homologous fragments from orthologous genes among Ciona intestinalis, Ciona savignyi, fugufish and zebrafish. To avoid premature transcription, the TGA sites derived from CGA were largely converted to TGG in sea squirt genes. By contrast, a significant increment of GC content at CpG flanking positions was shown in fish genes. The positively selected A/T to G/C substitutions, in combination with the CpG to TpG/CpA substitutions, are the sources of the extremely low CpG observed/expected ratios in vertebrates. The nonsynonymous substitutions caused by the GC content increase have resulted in frequent amino acid replacements in the directions that were not noticed previously. Conclusion: The increased GC content at CpG flanking positions can reduce CpG loss in fish genes and attenuate the impact of DNA methylation on CpG-containing codons, probably accounting for evolution towards vertebrates. © 2008 Wang, Leung.published_or_final_versio

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    Accumulation of Endogenous LITAF in Aggresomes

    Get PDF
    LITAF is a 161 amino acid cellular protein which includes a proline rich N-terminus and a conserved C-terminal domain known as the simple-like domain. Mutations in LITAF have been identified in Charcot-Marie tooth disease, a disease characterized by protein aggregates. Cells transfected with cellular LITAF reveal that LITAF is localized to late endosomes/lysosomes. Here we investigated the intracellular localization of endogenous LITAF. We demonstrated that endogenous LITAF accumulates at a discrete cytoplasmic site in BGMK cells that we identify as the aggresome. To determine the domain within LITAF that is responsible for the localization of LITAF to aggresomes, we created a construct that contained the C-terminal simple-like domain of LITAF and found that this construct also localizes to aggresomes. These data suggest the simple-like domain is responsible for targeting endogenous LITAF to the aggresome

    Gradual transition from mosaic to global DNA methylation patterns during deuterostome evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation by the Dnmt family occurs in vertebrates and invertebrates, including ascidians, and is thought to play important roles in gene regulation and genome stability, especially in vertebrates. However, the global methylation patterns of vertebrates and invertebrates are distinctive. Whereas almost all CpG sites are methylated in vertebrates, with the exception of those in CpG islands, the ascidian genome contains approximately equal amounts of methylated and unmethylated regions. Curiously, methylation status can be reliably estimated from the local frequency of CpG dinucleotides in the ascidian genome. Methylated and unmethylated regions tend to have few and many CpG sites, respectively, consistent with our knowledge of the methylation status of CpG islands and other regions in mammals. However, DNA methylation patterns and levels in vertebrates and invertebrates have not been analyzed in the same way.</p> <p>Results</p> <p>Using a new computational methodology based on the decomposition of the bimodal distributions of methylated and unmethylated regions, we estimated the extent of the global methylation patterns in a wide range of animals. We then examined the epigenetic changes <it>in silico </it>along the phylogenetic tree. We observed a gradual transition from fractional to global patterns of methylation in deuterostomes, rather than a clear demarcation between vertebrates and invertebrates. When we applied this methodology to six piscine genomes, some of which showed features similar to those of invertebrates.</p> <p>Conclusions</p> <p>The mammalian global DNA methylation pattern was probably not acquired at an early stage of vertebrate evolution, but gradually expanded from that of a more ancient organism.</p

    Prediction of grip and key pinch strength in 978 healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hand strength is an important independent surrogate parameter to assess outcome and risk of morbidity and mortality. This study aimed to determine the predictive power of cofactors and to predict population-based normative grip and pinch strength.</p> <p>Methods</p> <p>A representative population survey was used as the basis for prediction analyses (n = 978). Bivariate relationships between grip/pinch strengths of the dominate hand were explored by means of all relevant mathematical functions to maximize prediction. The resulting best functions were combined into a multivariate regression.</p> <p>Results</p> <p>Polynoms (up to the third degree) were the best predictive functions. On the bivariate level, height was best correlated to grip (46.2% explained variance) and pinch strength (37.7% explained variance) in a linear relationship, followed by sex, age, weight, and occupational demand on the hand. Multivariate regression provided predicted values close to the empirical ones explaining 76.6% of the variance for grip strength and 67.7% for pinch strength.</p> <p>Conclusion</p> <p>The five easy-to-measure cofactors sex, age, body height, categorized occupational demand on the hand, and body weight provide a highly accurate prediction of normative grip and pinch strength.</p

    Polymorphisms in Toll-like receptor genes influence antibody responses to cytomegalovirus glycoprotein B vaccine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Congenital Cytomegalovirus (CMV) infection is an important medical problem that has yet no current solution. A clinical trial of CMV glycoprotein B (gB) vaccine in young women showed promising efficacy. Improved understanding of the basis for prevention of CMV infection is essential for developing improved vaccines.</p> <p>Results</p> <p>We genotyped 142 women previously vaccinated with three doses of CMV gB for single nucleotide polymorphisms (SNPs) in TLR 1-4, 6, 7, 9, and 10, and their associated intracellular signaling genes. SNPs in the platelet-derived growth factor receptor (PDGFRA) and integrins were also selected based on their role in binding gB. Specific SNPs in TLR7 and IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) were associated with antibody responses to gB vaccine. Homozygous carriers of the minor allele at four SNPs in TLR7 showed higher vaccination-induced antibody responses to gB compared to heterozygotes or homozygotes for the common allele. SNP rs1953090 in IKBKE was associated with changes in antibody level from second to third dose of vaccine; homozygotes for the minor allele exhibited lower antibody responses while homozygotes for the major allele showed increased responses over time.</p> <p>Conclusions</p> <p>These data contribute to our understanding of the immunogenetic mechanisms underlying variations in the immune response to CMV vaccine.</p

    Environmental Acidification Drives S. pyogenes Pilus Expression and Microcolony Formation on Epithelial Cells in a FCT-Dependent Manner

    Get PDF
    Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen responsible for a diverse variety of diseases, including pharyngitis, skin infections, invasive necrotizing fasciitis and autoimmune sequelae. We have recently shown that GAS cell adhesion and biofilm formation is associated with the presence of pili on the surface of these bacteria. GAS pilus proteins are encoded in the FCT (Fibronectin- Collagen-T antigen) genomic region, of which nine different variants have been identified so far. In the present study we undertook a global analysis of GAS isolates representing the majority of FCT-variants to investigate the effect of environmental growth conditions on their capacity to form multicellular communities. For FCT-types 2, 3, 5 and 6 and a subset of FCT-4 strains, we observed that acidification resulting from fermentative sugar metabolism leads to an increased ability of the bacteria to form biofilm on abiotic surfaces and microcolonies on epithelial cells. The higher biofilm forming capacity at low environmental pH was directly associated with an enhanced expression of the genes encoding the pilus components and of their transcription regulators. The data indicate that environmental pH affects the expression of most pilus types and thereby the formation of multicellular cell-adhering communities that assist the initial steps of GAS infection
    corecore